Insecticides

3.365071770374 (2090)
Posté par hal 17/04/2009 @ 08:07

Tags : insecticides, polluants, environnement

Dernières actualités
Des traces de pesticides dans les urines de femmes enceintes - AFP
Les chercheurs se sont particulièrement intéressés aux herbicides de la famille des triazines et aux insecticides organophosphorés, "potentiellement toxiques pour la reproduction et le neurodéveloppement". L'atrazine et la simazine, de la classe des...
De la terre contre les insectes - Le Figaro
L'agriculture est ainsi priée de remplacer certains insecticides par des procédés plus naturels. La société Arvel (contraction d'argiles du Velay), qui commercialise la terre glaise pour la cosmétique et la parapharmacie, a trouvé un nouveau débouché....
Rodez. Insectes et pièges remplacent fongicides et insecticides - LaDépêche.fr
Nous sommes déjà à zéro fongicides et zéro insecticides depuis deux ans. L'objectif est d'atteindre aussi zéro pesticide. La protection des végétaux contre la maladie ou les nuisibles s'exerce de manière naturelle. Il existe deux possibilités,...
Les abeilles victimes du pesticide Cruiser ? - Place Publique
Le Cruiser appartient à la famille des insecticides neurotoxiques, dangereux pour le système nerveux des insectes pollinisateurs et des hommes. Un autre pesticide Force 1.5 de la même firme est à l'origine de la mort des 300 000 abeilles d'un...
Parkinson : les pesticides doublent le risque chez les agriculteurs - Le Monde
Les chercheurs ont mis en évidence chez les hommes exposés à des insecticides de type organochloré – qui regroupent par exemple le lindane, le chlordécone et le DDT, persistant dans l'environnement de nombreuses années après l'utilisation – un risque...
«Les insecticides, danger numéro 1» - Libération
L'utilisation à grande échelle de certaines substances chimiques insecticides, fongicides, rodenticides, herbicides risque de conduire à des altérations très regrettables des équilibres naturels. L'avenir, en précipitant les catastrophes trop...
La société Biotop s'installe à Livron : des insectes pour protéger ... - Le Dauphiné Libéré
Autrement dit, l'élevage de petites bestioles capables de remplacer les insecticides chimiques pour protéger plantes et cultures. Le procédé n'est pas nouveau : il est utilisé par les agriculteurs depuis une vingtaine d'années....
Mildiou: protéger toutes les parcelles - Agri
L'utilisation d'autres insecticides nécessite une autorisation en PER. Les premières hampes florales des betteraves mauvaises herbes apparaissent dans les champs infestés par ces adventices. Pour éviter une augmentation du stock grainier, éliminer ces...
Pourquoi les abeilles meurent - Paris Normandie
Ils s'inquiètent également des interactions entre les insecticides et autres produits phytosanitaires et les nappes phréatiques. Enfin, ils tentent de faire interdire un nouvel insecticide de la famille des néonicotinoïdes, autorisé depuis 2008 sur les...
Les Snobismes de 2009 - Le Figaro
Il est de bon goût d'aimer les vins sans pesticides, fongicides, insecticides et autres adjuvants chimiques. Et de parler alors de « pureté des arômes », d'« expression du terroir »… RACINES. La « cave à manger » du moment est un véritable concentré de...

Allélopathie

L’allélopathie est l'ensemble des interactions biochimiques directes ou indirectes, positives ou négatives, d’une plante sur une autre (micro-organismes inclus) au moyen de métabolites secondaires tels les acides phénoliques, les flavonoïdes, les terpénoïdes et les alcaloïdes.

Ces composés allélochimiques jouent un rôle important dans la compétition aux ressources environnementales que sont l’eau, la lumière et les substances nutritives ; dans l’armement chimique de défense des plantes contre leurs prédateurs, et dans la coopération intra- et interspécifique.

L’incorporation de ces substances allélopathiques dans la gestion de l’agriculture peut réduire l’utilisation d’herbicides, de fongicides et d’insecticides ; aussi diminuer la détérioration de l’environnement.

Le terme d’allélopathie a été introduit pour la première fois par Hans Molisch, scientifique autrichien, en 1937 pour décrire les interactions biochimiques néfastes et bénéfiques entre tous les types de plantes incluant les micro-organismes. Elroy Leon Rice, en 1984, renforce cette définition dans sa monographie sur l’allélopathie (la première sur ce sujet) : « Tout effet direct ou indirect, positif ou négatif, d’une plante (micro-organismes inclus) sur une autre, par le biais de composés biochimiques libérés dans l’environnement ».

Ces composés biochimiques sont appelés composés allélochimiques. Ils peuvent être classés en grande partie comme métabolites secondaires, qui sont généralement considérés comme étant des composés ne jouant aucun rôle dans le processus du métabolisme essentiels à la survie des plantes.

On trouve parmi ces composés des acides phénoliques, des flavonoïdes, des terpénoïdes, des alcaloïdes, et des glucosinolates. Ces produits allélochimiques sont présents dans pratiquement tous les tissus de la plante; des fruits, des fleurs, des feuilles en passant par la tige aux racines et rhizomes. Aussi au niveau du pollen et des graines.

Ils sont libérés de la plante à l’environnement au moyen de quatre processus écologiques : volatilisation, lixiviation, exudat racinaire et décomposition des résidus de la plante.

Les interactions allélopathiques sont souvent le résultat d’action jointes de plusieurs composés différents. Les activités biologiques des plantes réceptrices sont dépendantes de la concentration des produits allélochimiques c’est-à-dire qu’il y a émission d’une réponse que lorsque la concentration en produits allélochimiques atteint une certaines valeurs seuil.

L’interférence qui s’établit entre plantes voisines est attribuée principalement à des effets de compétition pour les ressources environnementales : eau, lumière et substances nutritives. Ainsi de nombreuses espèces végétales synthétisent des molécules capables d’inhiber la germination et la croissance des plantes croissant dans leur voisinage. Aussi faute de mobilité, les plantes ont du s’adapter aux attaques prédatrices d’autres organismes tels les insectes, les champignons et les bactéries ; cela par des mécanismes chimiques de défense pouvant avoir plusieurs fonctions. Ils peuvent être insecticides anti-microbiens voire pour certains herbicides. Actuellement, plus de 30 000 métabolites secondaires sont connus et ce grâce à l’analyse phytochimique de plantes supérieurs.

Une des singularités des végétaux est de former de nombreux composés dont le rôle, au niveau de la cellule, ne semble pas nécessaire tout en pouvant l’être au niveau de la plante entière. Le fait que ces composés ne se rencontrent pas chez toutes les espèces indique qu’ils n’entrent pas dans le métabolisme général et qu’ils n’exercent pas de fonction directe au niveau des activités fondamentales de l’organisme végétal : ce sont des métabolites secondaires.

Ces composés allélochimiques sont généralement des molécules de bas poids moléculaire qui peuvent être hydrophiles ou lipophiles. Parmi ces composés on trouve des acides phénoliques, des quinones et des terpènes. On peut citer la catéchine, l’acide élagique, la tellimagrandine, l’acide salicylique, l’acide ferulique parmi les polyphénols ; la p-benzoquinone et la DMBQ parmi les quinones ; 1,8cinéole, 1,4cinéole, pinène parmi les monoterpènes.

Les composés allélopathiques se comportent comme des herbicides naturels ; ils ont souvent plusieurs sites d’action et des effets divers sur les organismes cibles. Certains allélochimiques agissent en inhibant la photosynthèse ce qui ralentit la croissance des phototrophes. La B-1,2,3-tri-O-galloyl-4,6- (S)-hexahydroxyphenoyl-d-glucose (tellimagrandine II) inhibe le PSII en empêchant le transfert d’électrons entre les quinones Qa et Qb (Leu et al, 2002), tout comme la p-benzoquinone du sorgho Sorghum bicolor. La cyanobactérine de Scytonema hofmannii inhibe le transport d’électrons au-niveau du site accepteur du PSII. La fischerelline A de Fischerella sp interrompt le transport d’électrons à quatre endroits différents.

Les acides phénoliques peuvent perturber l’absorption minérale par la plante : l’acide salicylique (o-hydroxybenzoate) et l’acide ferulique (4-hydroxy-3-mthoxycinnamate) inhibent l’absorption d’ions K+ dans les racines d’Avena sativa. Le degré d’inhibition dépend de la concentration de l’acide phénolique et du pH (la diminution de pH entraîne une augmentation de l’absorption des composés phénoliques et donc de l’inhibition). Cette perturbation est due au fait que les acides phénoliques dépolarisent le potentiel membranaire des cellules racinaires ce qui modifie la perméabilité membranaire et ainsi le taux d’effluve d’ions, aussi bien anions que cations. L’étendue de la dépolarisation croît avec l’augmentation de la concentration en acides phénoliques, spécialement avec l’acide salicylique.

Les quinones génèrent des oxygènes activés, responsables de leur toxicité.

Certaines substances agissent sur l’expression des gènes des organismes cibles. La DMBQ (quinone) émise par les racines hôtes induit le développement de plantes parasites en régulant l’expression de certains gènes, impliqués dans la régulation du cycle cellulaire, la synthèse d’actine et de tubuline, l’extension des parois végétales et synthèse de GTP binding protein. La l-carvone de Mentha spicata, ses dérivés (limonène, p-cymène et isoprène) et plus généralement les terpénoïdes avec un motif p-menthane insaturé induisent l’expression des gènes bph des bactéries du genre Arthrobacter, responsables du catabolisme des PCB.Il existe probablement un récepteur aux structures isoprènes trouvées dans les monoterpènes, responsable de la régulation de l’expression de ces gènes. Mais les différents procédés par lesquels de nombreuses plantes sélectionnent les génotypes cataboliques bactériens en réponse aux pollutions sont mal connus.

Beaucoup de classes de monoterpènes volatiles inhibent la croissance végétale comme le 1,8cineole, le 1,4cineole, le pulegone, l’alpha et le beta pinène. Le 1,4cineole inhibe la croissance des racines de certaines herbes en inhibant l’Asn-synthase au-niveau du site de liaison de la glutamine.

L’inhibition de la croissance végétale est plus forte durant les premiers stades de développement de la plante émettrice. Les jeunes plantes de cresson (Avena caudatus ) se protègent en émettant par les racines de la lepidimoide et des polysaccharides qui affectent la croissance et la différenciation des plantes ou des microorganismes. Le degré maximal d’inhibition du sorgho est atteint après 4 semaines de croissance. La décomposition des résidus de la plante peut soit inhiber ou stimuler la croissance des plantes voisines ; l’inhibition la plus sévère apparaît au stade le plus tôt de la décomposition, ensuite l’inhibition décline pendant que la stimulation émerge graduellement.

Les éliciteurs des réactions de défense ont des molécules capables d’induire au moins l’une des réponses typiques de défense, comme la synthèse de phytoalexines, cela en l’absence de toute infection. Deux classes d’éliciteurs ont été caractérisées : les éliciteurs généraux tels que ceux provenant d’agents pathogènes (exogènes) et ceux produits par les plantes (endogènes) et les éliciteurs spécifiques. Les éliciteurs généraux, de natures polysaccharidique, lipidique, ou (glyco)protéique ne reproduisent pas la spécificité de reconnaissance gène pour gène, contrairement aux éliciteurs spécifiques. Trois types majeurs d’éliciteurs de nature polysaccharidique ont été identifié : les β-1,3 et β-1,6 glucanes et la chitine provenant des parois fongiques et les oligogalacturonides, résidus d’acides galacturoniques en liaison α-1,4 dérivés de la pectine des parois végétales. La nature et l’intensité des réponse de défense induites par ces éliciteurs dépendent de leur degré de polymérisation et de la plante. Ils interviennent probablement comme signaux de deuxième génération dans la cascade de réception-transductionparticipant à l’expression des réponse de défense. Parmi les éliciteurs de nature lipidique, l’acide arachidonique et d’autres acides gras insaturés génèrent les oxylipines, efficaces dans l’activation de la synthèse de phytoalexines. Les plantes qui influencent la structure des communautés bactériennes en réponse à une pollution du sol sont celles dont les racines sont perméables aux polluants.

Ils sont libérés de la plante à l’environnement au moyen de quatre processus écologiques : volatilisation, , exudat racinaire et décomposition des résidus de la plante. Le maximum d’effet se produit près des racines.

Le degré d’inhibition peut dépendre du pH du milieu qui facilite plus ou moins l’entrée des allélochimiques dans les cellules cibles. Le poly acétylène et le thiophène sont plus bioactifs après exposition aux UV-A. Leur effet inhibiteur est activé par la lumière. Certaines substances n’ont d’impact sur les organismes cibles que lorsqu’ils sont exposés à un apport constant de composés fraîchement émis. Des effets de synergie entre les différents composés présents dans les exudats végétaux peuvent être observés. Les effets négatifs sur les organismes cibles, par exemple une inhibition, n’atteignent jamais 100% d’efficacité pour ne pas favoriser l’émergence de résistance.

La toxicité d'une molécule est toujours relative et une molécule toxique ou repoussante pour certaines espèces peut être attractive pour d'autres, qui ont contourné ou détourné à leur profit les voies de toxicité.

La synthèse et l'utilisation effective des substances chimiques de défense est un compromis permanent entre coût et bénéfice pour le végétal. Ces mécanismes sont à mettre en relation avec le coût énergétique de la synthèse des molécules de défense.

Il s’agit ici de la version stricte de l’allélopathie : excrétion ou exudation par les plantes de substances inhibitrices qui réduisent ou empêchent la croissance d’autres plantes dans le voisinage.

On considère l'allélopathie comme une stratégie active de compétition, car elle joue sur la capacité des individus à diminuer les performances d'autres individus. La fonction de relation des végétaux repose sur l'extraordinaire spécificité de leurs métabolites secondaires.

C'est pourquoi l'inhibition peut être spécifique et, dans certains cas, sur les individus de la même espèce plus que les autres.

On peut considérer qu’il ne s’agit pas ici de réellement entrer en compétition mais de prévenir une croissance excessive dans un environnement hostile (désert) sous des conditions temporairement favorables car les ressources sont fonction du nombre d'individus de la même espèce présents sur le territoire hostile. En limitant leur croissance, ces individus peuvent ainsi subvenir à leur développement tout en préservant leur capacité à être compétitifs, à s'adapter à leur milieu. Par exemple, si les arbustes du désert répondaient immédiatement à une forte pluie par une croissance rapide, ils pourraient outrepasser leur capacité à survivre à une période de sécheresse, à laquelle ils sont préparés par un faible développement de leur organisme.

La compétition entre diverses espèces est la compétition interspécifique. Elle s'instaure pour l'appropriation d'une ressource présente en quantité limitée dans l'environnement. Il peut s'agir d'une ressource nutritive (lumière, eau, sels minéraux), ou d'une appropriation de l'espace. Les végétaux étant immobiles, ils bénéficient de vastes surfaces d'échanges avec l'environnement souterrain et aérien pour parvenir à leurs besoins d'organismes autotrophes fixés. Plus sa surface d'échanges est grande, plus le végétal collecte des signaux lui permettant de moduler son développement vers une exploitation efficace des ressources de son milieu.

Le végétal soumis à la compétition protège et défend ses surfaces d'échanges grâce à des métabolites secondaires.

La plupart des individus en compétition sont donc sujet à une inhibition tandis que la production totale de biomasse tend vers un maximum. On parle de plantes cibles qui captent les composés toxiques.

Les facteurs produits par le système racinaire jouent ici un rôle important, avec une faible contribution des feuilles.

Les genres Artemisia et Eucalyptus émettent du 1,8cineole, un puissant agent allélochimique qui inhibe la croissance de plusieurs herbes.

Une plante peut émettre plusieurs composés allélopathiques différents. Une substance allélopathique est plus ou moins spécifique vis-à-vis des organismes cibles, elle peut agir sur plusieurs espèces, plus ou moins éloignées phylogénétiquement.

L’arbre Ailanthus altissima émet de l’ailanthone, inhibiteur de croissance de Brassica juncea, Eragrostis tef, Lemna minor et Lepidium sativum. Les extraits de cet arbre, qui contiennent également comme composés actifs les quassinoïdes (triterpènes dégradés), l’amarolide, l’acétyl amarolide et la 2-dihydroxyailanthone, ont aussi un effet inhibiteur sur la croissance des insectes Pieris sp, Platyedra sp et les pucerons.

Les effets de ces substances volatiles libérées dans le sol et dans l'air sont nombreux : on peut citer l'inhibition de la mitose au niveau des méristèmes racinaires, la diminution de l'ouverture des stomates , l'inhibition de certaines enzymes, de la synthèse protéique. Les racines exudent une grande variété de molécules de faible poids moléculaire dans la rhizosphère. La rhizosphère est un lieu important d’interaction entre racines, pathogènes, microbes bénéfiques et invertébrés.

L’allélopathie concerne aussi le monde aquatique, chez les angiospermes, les épiphytes et le phytoplancton.

L’angiosperme d’eau douce Myriophyllum spicatum (Haloragaceae) émet des polyphénols algicides et cyanobactéricides (acide élagique, catéchine…), dont le plus actif est la tellimagrandine II, qui inhibe la photosynthèse des cyanobactéries et d’autres phototrophes et inactive les enzymes extracellulaires de ces organismes par complexation.

Les cyanobactéries Scytonema hofmannii (par le biais de la cyanobactérine) et Fischerella muscicola (via la fischerelline A) agissent de la même manière sur la photosynthèse.

L’interaction allélochimique est aussi importante pour la compétition dans le zooplancton, par exemple, la population du copépode Diaptomus tyrreli est réduite en présence de substances émises par le copépode Epischura nevadensis.

Les végétaux sont autotrophes. Cependant certains sont incapables de se nourrir seuls et vivent en parasites. Le parasitisme est défini comme une relation interspécifique durable où l'un des partenaires, le parasite, vit aux dépens du second, l'hôte, qui se trouve lésé par cette association. L'hôte représente ainsi le milieu de vie du parasite. La mise en place de la relation parasitaire constitue une étape cruciale dans le cycle de vie du parasite et dépend de la rencontre des deux partenaires. Un des exemples les plus connus est celui du gui, mais il y a de nombreux parasites (3000 à 5000 espèces) qui sont classés selon le terme hémiparasite ou holoparasites, selon leur capacité à effectuer la photosynthèse.

Lors de la sortie de la dormance des graines de l’hémiparasite Striga asiatica, un haustorium se développe en formant une structure racinaire massive pluricellulaire spécialisée qui envahit les racines hôtes et sert de conduit physiologique entre le parasite et l’hôte pour absorber les ressources de la plante. Le passage de la vie autotrophe à la vie hétérotrophe par le développement des haustoria chez les hémiparasites de la famille des Scrophulariaceae est déclenché par l’application aux racines du parasite de facteurs racinaires de la plante hôte. Plusieurs quinones et phénols provoquent ce phénomène en jouant sur les potentiels osmotiques de la plante hôte. Cela va modifier sa structure et donner un signal au parasite de lancer la morphogénèse de l'haustorium.

Le principal composé est la 2,6-dimethoxybenzoquinone (DMBQ). Elle est relâchée dans la rhizosphère dans les exudats racinaires ou issue de l’oxydation des acides phénoliques, composant majoritaire de ces exudats.

Les racines exercent une influence sélective sur les communautés bactériennes qui est en partie spécifique de la plante.

Les plantes peuvent augmenter la disparition des contaminants des sols en stimulant l’activité microbienne de dégradation.

De nombreuses plantes, dans des environnements différents et en réponse à différents polluants, enrichissent les populations de bactéries endophytiques et de la motte racinaire en génotypes cataboliques. L’enrichissement est dépendant de la nature et de la quantité de contaminants mais aussi des espèces de plantes. Ces bactéries protègent vraisemblablement les plantes des effets toxiques des polluants.

Les composés allélopathiques peuvent donc jouer un rôle dans la phytoremédiation grâce a leur activité importante dans les signaux d'information entre la bactérie et la plante.

Les relations des végétaux avec les micro-organismes ne sont pas toujours conflictuelles. Certaines sont des symbiotes tout aussi complexes que les relations entre agents pathogènes et la plante et aux conséquences tout aussi importantes pour l'agriculture.

Il existe des ressemblances de structure et de fonction entre le parasitisme et la symbiose. Certains parasites peuvent devenir symbiotes et inversement selon l'environnement, l'état physiologique du végétal et la variabilité génétique des protagonistes.

Associations d'un champignon en et d'une racine, les mycorhizes sont la symbiose la plus répandue sur terre. Outre leur rôle dans la nutrition du végétal elles contribuent à protéger les racines contre une infection par des micro-organismes pathogènes du sol.

Associations d'une bactérie ou d'une cyanobactérie et généralement d'une racine, elles sont plus spécifiques de certaines familles des végétaux.

Les métabolites jouent un rôle très important dans le processus de reconnaissance entre symbiotes et hôtes. Car celui- ci implique un dialogue chimique entre les protagonistes via des signaux moléculaires qui sont des flavonoïdes.

Le cas des nodosités est le plus connu: le végétal produit des flavonoïdes qui attirent les bactéries et stimulent leur production de facteurs de nodulation. Le végétal perçoit chimiquement ces facteurs NOD par des récepteurs et produit en retour plus de flanoïdes et initie la nodisité.

Pour les mycorhizes les processus sont les mêmes sauf que la relation entre le champignon et son hôte est peu spécifique. La voie de signalisation des endosymbioses est donc commune pratiquement commune aux deux champignon et la bactérie.

Certains composés des exudats racinaires peuvent servir de substrat naturel à l’induction des gènes bactériens de catabolisme des polluants des sols. La l-carvone de Mentha spicata et d’autres terpénoïdes sont d’importants inducteurs du cométabolisme des PCB (biphénols polychlorés, polluant) chez Arthrobacter sp.

On observe un enrichissement en phénotypes ntd Aa (2-nitrotoluène réductase) en cas de pollution par des nitro-aromatiques et un enrichissement en phénotypes alk B (alkane monooxygénase) et ndo B (naphtalène dioxygénase) pour une pollution aux hydrocarbures. L’enrichissement en phénotype alk B se produit dans l’intérieur de la racine (bactéries endophytiques) tandis que l’enrichissement en ndo B se produit dans la motte. Scirpus pungens exposée au pétrole enrichit le sol en génotypes ndo B tandis que la plupart des plantes l’enrichissent en alk B. Les bactéries endophytiques augmentent la capacité des plantes à résister aux pathogènes, herbivores et autres plantes.

L'allélopathie explique en partie le caractèe invasive de certaines espèces. Les invasions biologiques sont considérées par l'UICN comme la seconde cause de dégradation des écosystèmes et de régression de la biodiversité. A titre d'exemple, l'Ailantahus altissima (Fraux-vernis du Japon) interagit en Amérique du Nord avec trois espèces autochtones (Acer rubrum, Acer saccharum, Quercus rubra). Acer rubrum montre une réponse positive à la présence de l'envahisseur alors que les jeunes Q. rubra ont une croissance inhibée en sa présence. Une espèce invasive peut donc fortement modifier le peuplement dans le quel est apparait, en inhibant le développement de certaines espèces, et en en favorisant d'autres. Acer rubrum s'est fortement développé aux USA au XXème siècle, peut-être en partie à cause de l’Ailanthus altissima.

L’identification des substances qui permettent de stimuler l’expression de gènes responsables de la biodégradation de polluants pourrait permettre le développement de nouvelles approches pour la bioremédiation des sols contaminés. Les plantes qui sécrètent des monoterpènes pourraient être utilisées in situ pour la dépollution par des systèmes plante/bactérie des sols contaminés au PCB.

Pour une agriculture durable et une réduction de la dépendance aux produits chimiques synthétiques, qui provoquent une certaine résistance, une augmentation du coût et une contamination de l’environnement, le potentiel allélopathique peut être utilisé et ce dans plusieurs voies, par exemple dans l’utilisation de composés allélopathiques comme herbicides ou pesticides naturels.

La gestion des mauvaises herbes peut se faire au moyen de plantes allélopathiques utilisées comme couverture végétale, en sous-semi ou comme culture intercalaire nettoyante. En effet, la décomposition des résidus des plantes allélopathiques peut inhiber la germination et la croissance des mauvaises herbes tout en stimulant la croissance des plantes cultivées. Cette décomposition peut également servir de pesticides, comme par exemple avec la décomposition de haricot velu (Mucura deeingiana) qui réduit le développement de nématodes phytopatogènes de racines de tomate de plus de 50 %.

Les pesticides naturels, ou pesticides dérivés de produits naturels, aident à l’amélioration de la production et à la conservation de l’environnement en étant la cible d’aucun organisme, efficaces dans le contrôle des organismes nuisibles, moins toxiques, et biodégradables en même temps. Ils peuvent aussi être plus sûrs que les pesticides synthétiques. En effet, l’utilisation répétée d’une seule molécule servant de pesticide synthétique peut conduire au développement de résistance de la part des populations cibles, contrairement aux pesticides naturels qui, dans les mécanismes de défense de la plante, souvent se composent d’une variété de toxines qui permettent ainsi une adaptation peu propice des organisme cibles.

Les plantes utilisées comme couverture présentent donc un faible pouvoir de compétition vis-à-vis des cultures, tout en permettant un contrôle de la flore adventice.

En haut



Pesticide

Structure chimique d'un insecticide, le DDT

Un pesticide est une substance émise dans une culture pour lutter contre des organismes nuisibles. C'est un terme générique qui rassemble les insecticides, les fongicides , les herbicides, les parasiticides. Ils s'attaquent respectivement aux insectes ravageurs, aux champignons, aux « mauvaises herbes » et aux vers parasites.

Ils englobent donc les substances « phytosanitaires » ou « phytopharmaceutiques ».

Dans une acception plus large, comme celle de la réglementation européenne , ce peut être des régulateurs de la croissance, ou des substances qui répondent à des problèmes d'hygiène publique (par exemple les cafards dans les habitations), de santé publique (les insectes parasites ou vecteurs de maladies telles que le paludisme et les bactéries pathogènes de l'eau détruites par la chloration), de santé vétérinaire, ou concernant les surfaces non-agricoles (routes, aéroports, voies ferrées, réseaux électriques...).

L’étymologie du mot pesticide s'est construite sur le modèle des nombreux mots se terminant par le suffixe «-cide » qui a pour origine le verbe latin « caedo, cadere » et qui signifie « tuer ». On lui a adjoint la racine anglaise pest (animal, insecte ou plante nuisible) ou le mot français peste (fléau, chose pernicieuse qui corrompt, maladie), provenant tous deux du latin Pestis qui désignait le fléau en général, et une maladie dangereuse en particulier (cependant, Emile Littré dans son dictionnaire de 1872-1877 citait aussi Corssen qui estimait que pestis venait de perdtis (perdere, perdre, ruiner).

La lutte chimique existe depuis des millénaires : l'usage du soufre remonte à la Grèce antique (1000 ans avant J.-C.) et l'arsenic est recommandé par Pline, naturaliste romain, en tant qu'insecticide. Des plantes connues pour leurs propriétés toxiques ont été utilisées comme pesticides (par exemple les aconits, au Moyen Âge, contre les rongeurs). Des traités sur ces plantes ont été rédigés (Ex : traité des poisons de Maïmonide en 1135). Les produits arsenicaux ou à base de plomb (Arséniate de plomb) étaient utilisés au XVIe siècle en Chine et en Europe. Les propriétés insecticides du tabac étaient connus dès 1690. En Inde, les jardiniers utilisaient les racines de Derris et Lonchocarpus (roténone) comme insecticide. Leur usage s'est répandu en Europe vers 1900.

La chimie minérale s'est développée au XIXe siècle, fournissant de nombreux pesticides minéraux à base de sels de cuivre. Les fongicides à base de sulfate de cuivre se répandent, en particulier la fameuse bouillie bordelaise (mélange de sulfate de cuivre et de chaux) pour lutter contre les invasions fongiques de la vigne et de la pomme de terre, non sans séquelles de pollution sur les sols (cuivre non dégradable). Des sels mercuriels sont employés au début du XXe siècle pour le traitement des semences.

L'ère des pesticides de synthèse débute vraiment dans les années 1930, profitant du développement de la chimie organique de synthèse et de la recherche sur les armes chimiques durant la Première Guerre mondiale. En 1874, Zeidler synthétise le DDT, dont Muller en 1939 établit les propriétés insecticides. Le DDT est commercialisée dès 1943 et ouvre la voie à la famille des organochlorés. Le DDT a dominé le marché des insecticides jusqu'aux début des années 1970.

En 1944, l'herbicide 2,4-D, copié sur une hormone de croissance des plantes et encore fortement employé de nos jours, est synthétisé.

La Seconde Guerre mondiale a généré, à travers les recherches engagées pour la mise au point de gaz de combat, la famille des organophosphorés qui, depuis 1945, a vu un développement considérable encore de mise aujourd'hui pour certains de ces produits, tel le malathion.

En 1950-55 se développe aux États-Unis les herbicides de la famille des urées substituées (linuron, diuron), suivi peu après par les herbicides du groupe ammonium quaternaire et triazines.

Les fongicides du type benzimidazole et pyrimides datent de 1966, suivi par les fongicides imidazoliques et triazoliques dit fongicide IBS (inhibiteur de la synthèse des stérols) qui représentent actuellement le plus gros marché des fongicides.

Dans les années 1970-80 apparait une nouvelle classe d'insecticides, les pyréthrinoïdes qui dominent pour leur part le marché des insecticides.

Auparavant, la recherche de matières actives se faisait au hasard en soumettant de nombreux produits à des tests biologiques. Lorsque un produit était retenu pour ces qualités biocides, on cherchait à en améliorer l'efficacité à travers la synthèse d'analogues. Cette procédure a permis de développer les techniques de synthèses qui sont de mise aujourd'hui.

Désormais, l'accent est mis sur la compréhension des modes d'action et la recherche de cibles nouvelles. Connaissant les cibles, on peut alors établir des relations structure-activité pour aboutir à l'obtention de matières actives. Ceci est possible grâce au développement de la recherche fondamentale dans les domaines de la biologie et de la chimie et aux nouveaux outils fournis par la chimie quantique, les mathématiques et l'informatique qui permettent la modélisation de ces futures molécules.

Actuellement, on assiste à une consolidation du marché au niveau des familles les plus récemment découvertes avec la recherche de nouvelles propriétés. Dans le même temps, de nouvelles cibles physiologiques de l'animal ou du végétal sont explorées dans le but de développer des produits à modes d'action originaux, des produits issus de la biotechnologie ou des médiateurs chimiques.

Les tonnages utilisés dans le monde ont régulièrement augmenté depuis 60 ans. Ils semblent diminuer dans certains pays en Europe, mais il faut aussi tenir compte du fait qu'à dose ou poids égal, les matières actives d'aujourd'hui, sont beaucoup plus efficaces que celles des décennies précédentes ; la France reste, en 2006, le deuxième consommateur mondial de pesticides , et troisième en 2007. Presque autant que les États-Unis mais avec une surface agricole 10 fois plus petite. La France et la Hollande sont les pays qui consomment la plus grosse quantité de pesticides à l'hectare. La France a d'ailleus été menacée par la commission européenne d'être condamnée, à défaut de prendre les mesures nécessaires, à une amende de 28 millions d’€uros pour non respect des règles européennes en matière de pesticide.

Les molécules commercialisées évoluent, soit par nécessité de contourner les résistances des insectes, champignons ou végétaux, soit pour remplacer des produits interdits en raison de leur toxicité, soit parce que des molécules jugées plus intéressantes viennent en remplacer d'autres.

Les pesticides les plus utilisés (en termes de quantité) sont les désherbants. La molécule active la plus vendue comme désherbant et la plus utilisée dans le monde est le glyphosate.

Il existe de part le monde près de 100'000 spécialités commerciales autorisées à la vente, composées à partir de 900 matières actives différentes. 15 à 20 nouvelles matières actives s'y rajoutent tous les ans.

Cette notion de solubilité est importante car c'est l'affinité d'un pesticide pour l'eau ou les corps gras qui va conditionner sa pénétration dans l'organisme ciblé.

La formulation d'un pesticide vise a présenter la matière active sous une forme permettant son application en lui ajoutant des substances destinées à améliorer et faciliter son action. Ce sont les adjuvants. Ils comprennent des tensio-actifs, des adhésifs, des émulsionnants, des stabilisants, des antitranspirants, des colorants, des matières répulsives, des émétiques (vomitifs) et parfois des antidotes.

Lors d'un traitement, plus de 90 % des quantités utilisées de pesticides n'atteignent pas le ravageur visé. L'essentiel des produits phytosanitaires aboutissent dans les sols où ils subissent des phénomènes de dispersion. Les risques pour l'environnement sont d'autant plus grands que ces produits sont toxiques, utilisés sur des surfaces et à des doses/fréquences élevées et qu'ils sont persistants et mobiles dans les sols.

Le sol comporte des éléments minéraux et organiques ainsi que des organismes vivants. Dans le sol, les pesticides sont soumis à l'action simultanée des phénomènes de transferts, d'immobilisation et de dégradation.

Les pesticides sont en majorité adsorbés rapidement par les matières humiques du sol (colloïdes minéraux et organiques). Une molécule adsorbée n'est plus en solution dans la phase liquide ou gazeuse. N'étant plus disponible, ses effets biologiques sont supprimés ; elle n'est plus dégradée par les micro-organismes du sol ce qui augmente sa persistance. Elle n'est plus entraînée par l'eau, ce qui empêche la pollution de cette dernière. Sa désorption lui rend toutes ses capacités biotoxiques. Plus fortement retenu en général dans les sols argileux ou riche en matières organiques.

La dégradation est assurée principalement par les organismes biologiques de la microflore du sol (bactéries, actinomycètes, champignons, algues, levures), celle-ci pouvant atteindre 1 t de matière sèche à l'hectare. Son action s'exerce surtout dans les premiers centimètres du sol. Il existe également des processus physiques ou chimiques de dégradation, tel que la photodécomposition. Ces actions contribuent à diminuer la quantité de matière active dans le sol et donc à réduire les risques de pollution. La cinétique de dégradation d'une molécule donnée est déterminée en estimant la persistance du produit. Pour cela, on détermine sa demie vie qui est la durée à l'issue de laquelle sa concentration initiale dans le sol a été réduite de moitié. Cette demie vie peut varier avec la température, le type de sol, l'ensoleillement, etc : ainsi, celle du DDT est d'environ 30 mois en région tempérée et de 3 à 9 mois sous climat tropical. Le lindane, le DDT et l'endrine se dégradent en quelques semaines dans les sols inondés des rizières, au contraire de l'aldrine, de la dieldrine et du chlordane.

Les sols se comportent comme un filtre actif en assurant la dégradation des produits phytosanitaires, et sélectif, car ils sont capables de retenir certains de ces produits.

En exemple, nous citerons le cas de l'oxychlorure de cuivre (bouillie bordelaise) qui s'accumule dans les sols et qui a entraîné la stérilisation de 50'000 ha de certains sols de bananeraies au Costa Rica.

Les pesticides peuvent être responsables de pollutions diffuses et chroniques et/ou aiguës et accidentelles, lors de leur fabrication, transport, utilisation ou lors de l'élimination de produits en fin de vie, dégradés, inutilisé ou interdits.

On les trouve sous forme de « résidus » (molécule mère, produits et sous-produits de dégradation ou métabolites) dans nos aliments et boissons. Des lois ou directives européennes imposent des seuils à ne pas dépasser, dont dans l'eau potable.

Selon une étude de l'Université de Californie, publiée dans la revue Chemistry & Industry (26 mars 2007), des chercheurs ont comparé les kiwis d'un même verger produits au même moment, les uns en agriculture bio, et les autres avec des pesticides. À la récolte, les kiwis « bio » contenaient significativement plus de vita­mine C, plus de minéraux et plus de polyphénols (composés organiques supposés « bons pour la santé », car réduisant la formation de radicaux libres). Les chercheurs estiment que les kiwis non traités développent mieux leurs mécanismes de défense ; étant plus stressés, ils fabriquent par exemple plus d'antioxydants.

Le délai qui sépare l'exposition au produit et l'apparition des troubles est relativement court, de quelques heures à quelques jours, permettant le plus souvent de relier les effets à la cause.

Les dérivés organochlorés induisent tout d'abord des troubles digestifs (vomissement, diarrhée) suivi par des troubles neurologiques (maux de tête, vertige) accompagné d'une grande fatigue. À ceci succèdent des convulsions et parfois une perte de conscience. Si le sujet est traité à temps, l'évolution vers une guérison sans séquelles survient généralement. L'intoxication aiguë avec ce type de produit est relativement rare, à moins d'ingestion volontaire (suicide) ou accidentelle (absorption par méprise, dérive de nuage, jet de pulvérisateur…).

Les dérivés organophosphorés ainsi que les carbamates, en inhibant la cholinestérase, induisent une accumulation d'acétylcholine dans l'organisme débouchant sur une hyperactivité du système nerveux et à une crise cholinergique. Les signes cliniques sont des troubles digestifs avec hypersécrétion salivaire, nausée, vomissement, crampes abdominales, diarrhée profuse. Il y a de plus des troubles respiratoires avec hypersécrétion bronchique, toux et essoufflement. Les troubles cardiaques sont une tachycardie avec hypertension puis hypotension. Les troubles neuromusculaires se traduisent par des contractions fréquentes et rapides de tous les muscles, des mouvements involontaires, des crampes puis une paralysie musculaire générale. La mort survient rapidement par asphyxie ou arrêt cardiaque. Un antidote spécifique existe pour cette catégorie de produit : le sulfate d'atropine qui neutralise rapidement les effets toxiques.

Chez l'adulte, les produits rodenticides à base d'anticoagulants n'entraînent généralement pas -à moins d'absorption massive à but suicidaire- de troubles de la coagulation, ni d'hémorragie. Par contre, chez l'enfant, des hémorragies graves peuvent survenir. Ils agissent en abaissant le taux de prothrombine dans le sang, nécessaire à la formation du caillot sanguin, entraînant ainsi des hémorragies internes. Les symptômes apparaissent après quelques jours pour une dose élevée, après quelques semaines pour des prises répétées :sang dans les urines, saignement de nez, hémorragie gingivale, sang dans les selles, anémie, faiblesse. La mort peut survenir dans les 5 à 7 jours qui suivent.

Selon la Mutualité sociale agricole (MSA) et le laboratoire GRECAN, de premières études MSA ont conclu en France qu'environ 100 à 200 intoxications aiguës (irritations cutanées, troubles digestifs, maux de têtes) par an sont imputées aux pesticides.

Atteintes dermatologiques : rougeurs, démangeaisons avec possibilité d'ulcération ou de fissuration, urticaire sont très fréquemment observées, touchant plutôt les parties découvertes du corps (bras, visage). Nombre de produits provoquent des problèmes cutanés, dont les roténones responsables de lésions sévères au niveau des régions génitales.

Atteintes neurologiques : les organochlorés font apparaître une fatigabilité musculaire, une baisse de la sensibilité tactile. Les organophosphorés entraînent à long terme des céphalées, de l'anxiété, de l'irritabilité, de la dépression et de l'insomnie, alliés parfois à des troubles hallucinatoires. Certains provoquent une paralysie, comme les dérivés mercuriels ou arsenicaux.

Troubles du système hématopoïétique : les organochlorés peuvent provoquer une diminution du taux de globules rouges et de globules blancs, avec risque de leucémie.

Atteintes du système cardiovasculaire : les organochlorés développent des phénomènes de palpitation et de perturbation du rythme cardiaque.

Atteintes du système respiratoire : ces atteintes sont souvent en relation avec les phénomènes d'irritation engendrés par bon nombres de pesticides, favorisant ainsi les surinfections et être à l'origine de bronchites, rhinites et pharyngites.

Atteintes des fonctions sexuelles : un nématicide (DBCP) a provoqué chez les employés de l'usine où il est synthétisé un nombre important de cas d'infertilité. D'autres substances semblent impliquées dans la délétion croissante de la spermatogenèse, soit directement comme reprotoxiques soit à faible doses ou via des coktails de produits comme perturbateur endocrinien. Dans ce cas, l'embryon peut être touché, même par une exposition à de faibles doses (anomalies génitales, et peut-être risque augmenté de certains cancers et de délétion de la spermatogenèse chez le futur adulte).

Risques fœtaux : des pesticides franchissent la barrière placentaire et ont une action tératogène sur l'embryon. C'est le cas du DDT, du malathion, des phtalimides (fongicide proche de la thalidomide). Il peut survenir des accouchements prématurés ou des avortements, ainsi que des malformations de l'appareil génital du garçon. Il est conseillé à la femme enceinte d'éviter tout contact avec des pesticides entre le 23e et le 40e jour de la grossesse, mais certains produits ont une longue durée de demie-vie dans l'organismes (lindane, DDT par exemple).

Maladies neurodégénratives : Une étude publiée en 2006 a conclu à une augmentation des risques de maladie de Parkinson suite à l'exposition à certains pesticides, notamment... voir le résumé.

Cancers : Le GRECAN a mis en évidence un plus faible nombre de cancers chez les agriculteurs que dans la population générale, mais avec une occurrence plus élevée de certains cancers (prostate, testicules, cerveau (gliomes)...). Il existe dans le monde une trentaine d'études qui montrent toutes une élévation du risque de tumeurs cérébrales. Selon l'INSERM il semble exister une relation entre cancer du testicule et exposition aux pesticides .

L'étude d'Isabelle Baldi : Une étude a conclu mi-2007 que le risque de tumeur cérébrale est plus que doublé chez les agriculteurs très exposés aux pesticides (tous types de tumeurs confondues, le risque de gliomes étant même triplé). Les habitants utilisant des pesticides sur leurs plantes d'intérieur ont également un risque plus que doublé de développer une tumeur cérébrale L’étude ne permet pas de dire si un produit ou une famille de pesticide serait plus responsable que d’autres, mais l’auteur note que les fongicides sont 80 % des pesticides utilisés par les vignerons.

Depuis 2006, l'Agence française de sécurité sanitaire des aliments (Afssa) est chargée de tester les pesticides mis sur le marché, avant leur homologation. Ainsi, l'Afssa a interdit en 2001 le traitement des vignes à l'arsenic après la découverte de pathologies suspectes.

Les enfants sont particulièrement vulnérables. Selon une étude publiée en 2008 par l'EPA, beaucoup de bébés ne développent pas de capacité à métaboliser (dégrader) les pesticides qu'ils ont absorbés durant les 2 premières années de leur vie, ce qui les expose particulièrement. L'EPA a interdit deux pesticides domestiques aux UDA (Diazinon et Chlorpyrifos), ce qui a conduit à une rapide décroissance de ces produits et de l'exposition de ces produits à New York, où les enfants se sont montrés en meilleure santé depuis l'interdiction de ces produits. De plus, par kg de poids corporel, comme pour la plupart des toxiques, les enfants en respirent et en absorbent plus (en moyenne) que les adultes.

Certains pesticides se comportent comme des « leurres hormonaux ». Chez 100 % des 308 femmes enceintes espagnoles, ayant ensuite donné naissance à des enfants jugés en bonne santé entre 2000 et 2002, on a trouvé au moins un type de pesticide dans le placenta (qui en contenait en moyenne 8, et jusqu’à 15, parmi 17 pesticides recherchés, organochlorés, car étant aussi des perturbateurs endocriniens). Les pesticides les plus fréquents étaient dans cette étude le 1,1-dichloro-2,2 bis (p-chlorophényl)-éthylène (DDE) à 92,7 %, le lindane à 74,8 % et l’endosulfan-diol à 62,1 % (Le lindane est interdit, mais très persistant).

De nombreuses plantes produisent naturellement des substances pour se protéger : ainsi le tabac produit l'insecticide nicotine, et le chrysanthème de la pyréthrine. Cette logique a été poussée plus loin par l'introduction de plantes génétiquement modifiées qui produisent elles aussi, généralement tout au long de leur cycle de croissance, leurs propres matières actives (ainsi le Bt, une protéine insecticide produite à l'origine par une bactérie, qui est produite dans la plante génétiquement modifiée au niveau des racines, tiges, feuilles et pollen, mais pas dans la graine) ou des substances fongicides ou bactéricides (faut-il classer ces organismes artificiellement créés parmi les pesticides ?).

La résistance aux pesticides est la résultante d'une sélection d'organismes tolérant des doses qui tuent la majorité des organismes normaux. Les individus résistants se multiplient en l'absence de compétition intraspécifique et ils deviennent en très peu de générations les individus majoritaires de la population.

La résistance est définie par l'OMS comme « l'apparition dans une population d'individus possédant la faculté de tolérer des doses de substances toxiques qui exerceraient un effet létal sur la majorité des individus composant une population normale de la même espèce ».

Elle résulte de la sélection, par un pesticide, de mutants qui possèdent un équipement enzymatique ou physiologique leur permettant de survivre à des doses létales de ce pesticide.

Un pesticide se contente de sélectionner la résistance, mais ne la crée pas.

Depuis le premier cas enregistré (résistance du pou de San José aux polysulfures dans les vergers de l'Illinois en 1905) les cas de résistance ont augmenté de manière exponentielle : 5 cas en 1928, 137 en 1960, 474 en 1980. En 1986, 590 espèces animales et végétales présentaient une résistance : 447 espèces d'insectes ou d'acariens, une centaine de pathogènes des végétaux, 41 espèces de mauvaises herbes ainsi que des nématodes et des rongeurs.

De nombreux cas de résistances aux insecticides sont certes anecdotiques, ne concernant qu'un lieu particulier. Par contre, d'autres se sont généralisées au monde entier, comme pour la mouche domestique Musca domestica résistante aux organochlorés ou le Tribolium (ver de la farine) résistant au lindane et au malathion. Le moustique Culex pipiens a développé des résistances élevées aux organophosphorés.

Toutes les familles d'insecticides peuvent induire des résistances chez les insectes. Les pyréthrinoïdes et analogues des hormones juvéniles n'échappent nullement à la règle, avec 6 cas de résistance aux pyréthrinoides en 1976, explosant à 54 cas en 1984.

En revanche, au niveau taxonomique, les différents ordres d'insectes expriment des sensibilités variées. Les Diptères présentent le plus grand nombre de cas de résistance, suivi par les hémiptères (pucerons et punaises). Les Coléoptères, Lépidoptères et Acariens représentent chacun 15 % des cas de résistance. Par contre, les Hyménoptères semblent réfractaires au développement de résistance, sans doute pour des raisons génétiques.

En 1984, on connaissait 17 espèces d'insectes et d'acariens résistants aux 5 principaux groupes de pesticides : Leptinotarsa decemlineata le doryphore de la pomme de terre, Myzus persicae le puceron du pêcher, Plutella xylostella la teigne des crucifères, le ver de la capsule, des noctuelles Spodoptera et des espèces d'Anophèles.

La résistance est parfois recherchée : c'est le cas pour l'acarien prédateur Phytoseiulus persimilis utilisé contre les Tétranyques des serres.

Les cultures les plus concernées par les phénomènes de résistance sont le coton et l'arboriculture fruitière. On peut citer le cas de la mouche blanche Bemisia tabaci (Aleurode) dans les cultures de coton de la plaine de Gézira au Soudan au début des années 1980 ou celui des cicadelles du riz en Extrême Orient et dans le Sud Est asiatique. En particulier, en Indonésie, la lutte chimique contre Nilaparvata lugens s'est avérée impossible au milieu des années 1980, obligeant le pays à se tourner vers un concept de protection intégrée des rizières en 1986.

Les deux premiers types de facteurs sont inhérents à l'espèce et ne peuvent être -a priori- modifiés par l'homme, qui ne pourra intervenir qu'au niveau du troisième groupe.

De nombreuses plantes ont été modifiées génétiquement pour être tolérantes à un désherbant total (le glyphosate). Elles contribuent donc à généraliser l'usage de ce désherbant, au risque d'étendre les résistances qui commencent à apparaître chez certains végétaux.

Un programme de suivi des résidus de pesticides dans les aliments végétaux de la Commission européenne est conduit annuellement, basé sur les résultats d’analyses de plus de 60 000 échantillons prélevés dans toute l’Union européenne. Un représentant de la Commission européenne a présenté les résultats des analyses des échantillons prélevés en 2004 lors d’une réunion du « Groupe de travail sur les résidus de pesticides » qui s'est déroulée à Corfou (Grèce) du 21 au 25 mai 2006.

Toutefois, ces résultats sont à insérer dans une réflexion critique sur les circuits économiques de la fabrication et commercialisation des pesticides. Parmi d'autres, les auteurs des livres Printemps silencieux (1963) et Pesticides. Les révélations sur un scandale français (2007) ont dénoncé la partialité des commissions d'évaluations des risques et dommages.

Pour l' année 2006, la présence de pesticides a été décelée dans 49,5% des fruits, légumes et céréales produits dans l'UE, le plus haut niveau de contamination jamais enregistré en Europe, selon un nouveau rapport de Bruxelles. Le rapport officiel 2008 de l'UE sur les pesticides porte sur les données de 2006.

Chaque produit est assorti à une homologation pour un ou plusieurs usages spécifiques qui doivent être spécifiés sur l'étiquette. La classe de danger doit également figurer sur l'étiquette, représentée par un logo international.

L'étiquetage ici en question est celui du récipient contenant le pesticide. Pour ce qui est des fruits et légumes à destination de l'alimentation humaine, à ce jour, aucune mention des pesticides utilisés pendant les phases de croissance et maturation n'est mise à disposition pour le consommateur final.

Les données commerciales (ventes, commandes) précises et géo-référencées seraient utiles aux épidémiologues et écoépidémiologues, mais elles sont considérées comme confidentielles par les producteurs. Les pesticides volatilisés dans l'air, ou transportés par l'eau et adsorbés sur les particules du sol sont difficiles à suivre. On ne mesure qu'une partie des molécules utilisées, et encore moins les produits de dégradation. Aussi, pour disposer de données et respecter la convention d'Aarhus sur l'accès à l'information environnementales, certains pays construisent-ils des stuctures de surveillance à long terme, dont la France avec un Observatoire français des pesticides Observatoire des résidus de pesticides (ORP) créé par l'Agence française de sécurité sanitaire de l'environnement et du travail (AFSSET) qui a dès 2007 commencé à mettre en ligne une carte de France interactive donnant accès aux données disponibles sur la présence de résidus de pesticides dans l'air, l'eau, les sols et certaines denrées alimentaires. L'agence encourage les propriétaires de données sur les pesticides à contribuer volontairement à mettre à jour cet outil.

En haut



Cochenille blanche

Pseudococcus citriculus

La cochenille blanche (Pseudococcus citriculus) est un insecte parasite des plantes.

Ses attaques se présentent sous la forme de taches blanches d'aspect cotonneux. L'insecte lui-même reste caché, mais se montre de temps en temps. Se déplaçant très lentement, il ressemble à un petit cloporte blanc (jusqu'à 2 mm de long).

Les insecticides agissant par contact ne sont pas très efficaces avec cette cochenille, car elle se cache dans son coton que l'insecticide ne parvient pas à traverser. Il est possible d'utiliser des insecticides dits systémiques : ils se mélangent à l'eau d'arrosage, puis pénètrent dans la plante pour circuler dans la sève, afin d'empoisonner les parasites.

La cochenille est utilisée depuis l'antiquité pour obtenir des beaux rouges et violets. En effet, en écrasant les taches blanches on obtient une teinte rouge. Cette teinture est déjà utilisée chez les Hébreux et est utilisée pour les tissus de luxe avec la pourpre.

En haut



Migration des insectes

Des monarques migrant par milliers vers le site d'Angangueo dans le nord du Michoacán au Mexique.

Des milliards d'insectes migrent chaque année, certains sur de petites distances, d'autres sur des distances intercontinentales, comparables à celles des migrations d'oiseaux.

On connait depuis l'antiquité la migration du criquet pèlerin. Celle de certains papillons, dont le Monarque aux États-Unis est étudiée depuis longtemps, mais l'étude des migrations d'insectes permise par les radioémetteurs (radiotracking) et de nouveaux modes de marquage et de suivi est récente.

Elle est importante pour l'écologie du paysage et l'entomologie ou l'agriculture, car les insectes ont des fonctions écologiques importantes, et peuvent parfois être des ravageurs des cultures ou des arbres. La connaissance des migrations animales est aussi un enjeu de santé publique, car certains insectes, de plus en plus résistants aux insecticides classiques, peuvent véhiculer des microbes ou des parasites, eux-même éventuellement devenus résistants aux antibiotiques, ou susceptible de le devenir.

Les modifications de ces migrations peuvent être dues aux activités humaines, à la fragmentation de habitats et aux modifications climatiques liées à l'Effet de serre.

On pressentait qu'au moins certaines espèces de libellules étaient migratrices, mais sans savoir sur quelles distances ni quels itinéraires.

Une équipe associant les universités de Princeton et de Rutgers a récemment montré que des libellules migrent un peu à la manière des oiseaux, en étant a priori capable de faire plus de 100 km/par semaine par beau temps sans vent. On ignore encore leurs itinéraires, mais en suivant (en voiture et/ou avion) durant 6 à 9 jours 14 libellules de l'espèce Anax junius (Anax de juin) capturées dans le New Jersey, et équipées d'émetteurs-radio miniaturisés, on a montré qu'elles migraient un peu à la manière des oiseaux (vers le sud des États-Unis en automne), certaines faisant le voyage du Nord-Est du pays jusqu'en Floride à une vitesse moyenne de 12 km par jour (jusqu'à 100 milles/jour, en étant alourdies par les émetteurs). Elles ont des lieux de repos, et comme les oiseaux, elles volent quelle que soit la direction du vent, en compensant peu leur dérive (dans ce cas, mais on a observé des papillons ou des libellules tropicale effectuer un trajet rectiligne au dessus de la mer ou d'un lac, de jour, mais se posent quand la vitesse du vent dépasse 25 km/h et/ou par temps pluvieux. Ce serait la température qui les pousse ; elles semblent ne décoller qu’après deux nuits froides se succédant.

Les libellules étant supposées apparues il y a 285 millions d’années environ (presque de 140 millions d’années avant les oiseaux) peut-être ont-elles été pionnières en matière de migration aérienne.

En haut



Démyélinisation

Une démyélinisation est une dégénérescence de la gaine de myéline qui protège les nerfs et neurones de certains animaux.

Elle entraîne notamment un ralentissement de la conduction des signaux nerveux, et se traduit par des affections au niveau des sensations, provoquer des troubles moteurs ou psychiques.

Une démyélinisation peut avoir plusieurs causes, parfois infectieuses, génétiques - c'est le cas des leucodystrophies - ou autoimmunes. Certains produits chimiques, comme les organo-phosphates utilisés dans certains insecticides ou anti-puces ont également pour effet secondaire une démyélinisation.

Parmi les maladies qui provoquent une démyélinisation, on peut compter la sclérose en plaques, la myélite transverse, le syndrome de Guillain-Barré et la leucoencéphalopathie multifocale progressive.

En haut



Réseau écologique national

Le réseau écologique national est un schéma et un projet national, issu de l'application de la théorie de l'Écologie du paysage. Il décrit pour un pays le complexe constitué par la somme (physique et fonctionnelle) des infrastructures naturelles (ou « corridors biologiques »). Pour certains insectes, oiseaux, poissons ou cétacés qui sont de grands migrateurs ce réseau a des extensions nécessaire dans d'autres parties du monde. Ce réseau peut-être visible à nos yeux (réseau de corridors constitués de vallées, fleuves, coteaux) ou plus discret (par exemple, le corridor de migration d'une espèce de papillon qui pourrait être interrompu par ex par une zone où des insecticides le tuent ou où la pollution lumineuse le perturbe…). Il s'agit aussi d'appliquer un des engagements de Rio, reprécisé au Sommet mondial de Johannesburg sur le Développement durable : « En vue d’assurer la préservation et l’utilité durable de la biodiversité, promouvoir et appuyer les initiatives en faveur des zones de richesse biologique et autres zones essentielles pour la biodiversité et promouvoir la mise en place de réseaux et de couloirs écologiques aux niveaux national et régional », avec l'objectif de parvenir, d’ici à 2010, à une réduction substantielle de l'érosion de la biodiversité (l'Europe vise, elle à stopper cette érosion), et une concentration des efforts pour délimiter de nouvelles zones marines protégées au profit des poissons et autres formes de vie marine.

Le réseau écologique national fait nécessairement partie d'un réseau plus vaste, et doit subsidiairement regrouper des réseaux régionaux qui eux-mêmes regroupent des trames vertes locales (maillages de corridors biologiques). Il doit être écologiquement connecté avec les réseaux écologiques des pays voisins et avec les réseaux écologiques sous-marins pour les pays bordés par la mer.

Un réseau écologique est toujours efficient à plusieurs échelles spatio-temporelles. Il doit être fonctionnel dès les échelles les plus locales (ex réseau bactérien ou de mycélium de champignons), aux échelles écopaysagères biosphériques (ex : corridor littoral continental).

Ses représentations cartographiques en sont nécessairement théoriques et simplifiantes, mais sont utiles comme documents d'aide et conseil pour l'aménagement du territoire.

Dans l'Union européenne, il doit décliner le réseau écologique paneuropéen ; au moins pour les États qui s'y sont engagés, en ratifiant la Stratégie paneuropéenne pour la protection de la diversité biologique et paysagère. Ce réseau également nommé REP ou PEEN (pan-european ecological network) a succédé à des projets antérieurs qui existaient et pour certains se concrétisent dans les anciens pays de l'Est-Européen. Il s'appuie maintenant sur Natura 2000 qui dans l'esprit de ses concepteurs était un réseau qui devait relier des noyaux représentatifs des habitats européens par des corridors biologiques.

Un réseau écologique panaméricain est aussi en construction, mais déjà pour partie menacé par un élargissement du canal de Panama) qui aggraverait son effet fragmentant.

Ces réseaux se développent moins vite que la biodiversité ne régresse. Ils sont encore trop souvent des projets de papiers, sans financements à la hauteur des enjeux, pas ou peu concrétisés sur le terrain, ou seulement comme réseau minimal vital se limitant à protéger l'existant là où les pressions foncières sont les moindres, plutôt qu'à restaurer une véritable trame fonctionnelle. Parfois ce ne sont sur le terrain que des réseaux de chemins de promenade, ou des réseaux d'espaces gérés pour favoriser quelques espèces phares, en oubliant les réseaux immatériels de migration des oiseaux, insectes, poissons, mammifères marins, plantes, champignons, etc. Certains s'inquiètent du fait que nombre des zones protégées sont littorales ou montagneuses et sont à ce titre particulièrement concernées par les risques liés au changement climatique.

En haut



Isocyanate de méthyle

Isocyanate de méthyle

L’isocyanate de méthyle est un composé organique de formule développée H3C-N=C=O. C’est un intermédiaire notamment utilisé pour la synthèse des carbamates insecticides tels que l’aldicarbe, le carbaryl le méthomyl ou le carbofuran. II intervient également dans la préparation de produits pharmaceutiques et de certains polymères. C’est un produit dangereux en raison de sa toxicité et de son pouvoir irritant. Il a été à l’origine de la catastrophe de Bhopal qui a causé la mort de plusieurs milliers de personnes.

Dans les conditions normales, l’isocyanate de méthyle est un liquide incolore d’odeur âcre. Il est très volatil et ses vapeurs sont lacrymogènes. Il a une température d’ébullition relativement basse (39 °C) et est hautement inflammable. Il est faiblement soluble dans l’eau (6 à 10% en masse) mais cette solution n’est pas stable car il réagit avec l’eau.

L’isocyanate de méthyle est généralement fabriqué à partir de la méthylamine et du phosgène. Ces produits réagissent à température ambiante mais pour des productions à l'échelle industrielle les réactifs sont mis en présence sous forme gazeuse à plus haute température. Il se forme initialement du chlorure de N-méthyl carbamoyle (MCC) et du chlorure d'hydrogène.

L'isocyanate de méthyle est ensuite obtenu en traitant le MCC avec une amine tertiaire comme la diméthylaniline ou avec la pyridine. On peut aussi le séparer par distillation.

En haut



Source : Wikipedia