Herbicides

3.4251918158512 (1564)
Posté par rachel 25/04/2009 @ 16:08

Tags : herbicides, polluants, environnement

Dernières actualités
Secteur du vivrier en Côte d'Ivoire - La FENACOVICI lance un fonds ... - Abidjan.net
Avant de promettre d'offrir aux coopératives de sa fédération des semences, des engrais et des herbicides. En attendant, elle a symboliquement distribué quelques cartons de ces produits aux représentants des différentes régions du pays....
Des pesticides dans les urines des femmes enceintes - Magic Maman
Cette étude a confirmé la présence d'herbicides de la famille des triazines et d'insecticides organophosphorés, « potentiellement toxiques pour la reproduction et le neurodéveloppement ». Dans certains cas, les traces de ces substances étaient visibles...
Herbicide Impact pour le maïs - Bulletin des agriculteurs
Juin 2009 - L'herbicide Impact a obtenu l'approbation réglementaire pour utilisation dans le maïs de semence et le maïs sucré (incluant les hybrides et les lignées autofécondées) pour la saison de production 2009. Impact combat les principales...
Démonstration à Bollène des tournesols tolérants aux herbicides ... - Agrisalon
Il s'agit notamment des tournesols tolérants à des herbicides. Ces nouveaux hybrides ont été obtenus par croisements conventionnels successifs grâce à la mise au point d'une lignée tolérante aux herbicides par mutagénèse. Cette technologie non OGM ne...
L'eau est à tous - Zinfos 974
... augmentent regulierement dans les eaux potables au point que ca "commence" à devenir un soucis. et de preciser a detour de son propos que des taux d'herbicides pourtant interdit depuis 2003 sont de plus en plus present sans qu'on sache pourquoi....
AGRICULTURE-GHANA : Quelques signes d'inquiétude comme les ... - Inter Press Sevice
Plusieurs variétés de cultures GM ont été conçues pour avoir une résistance plus élevée aux herbicides, permettant aux agriculteurs d'utiliser des quantités plus grandes pour tuer les mauvaises herbes tout en épargnant leurs cultures....
Quand l'agriculture est mauvaise pour la santé - Goodplanet info
Il existe trois principales catégories de pesticides : les herbicides, les fongicides et les insecticides. En Europe et en Amérique du Nord, les herbicides représentent 70 à 80% des produits utilisés tandis que sous les tropiques, 50% des produits...
Info Sciences - France Info
Selon Guy Richard, Directeur de recherche à l'INRA (l'Institut de recherche agronomique) d'Orléans une telle agriculteur sans herbicides et pesticides se jouent à partir de trois leviers : l'abandon du labour, l'alternance des cultures et les systèmes...
Eau potable et cancer, recommandations de consommation - Actualités News Environnement
Ce sont des insecticides, raticides, fongicides, et herbicides (désherbants). La norme est fixée à 0,1µg/L (microgramme par litre) pour chaque type de pesticide et la totalité de ces produits ne doit pas dépasser 0,5µg/L. Des publications scientifiques...
Aveizieux (42) - Initiation aux pratiques vertes - France 3
Objectif de cette journée : inciter les producteurs de maïs à utiliser moins d'herbicides et de pesticides sur leurs parcelles. Il s'agit également de les inciter à utiliser des moyens mécaniques plutôt que les produits chimiques et phytosanitaires...

Herbicides arc-en-ciel

Les herbicides arc-en-ciel désigne un groupe de six herbicides utilisés par les Forces armées des États-Unis en Asie du Sud-Est durant la Guerre du Vietnam dans le cadre d'une opération de guerre chimique avec pour objectif de détruire l'écosystème floral d'une zone utilisée par l'ennemi pour l'agriculture ou comme moyen de camouflage.

Mis au point dans le cadre du projet AGILE et développés par Dow Chemical et Monsanto pour le compte de l'armée américaine, ces herbicides sont utilisé durant l'Opération Ranch Hand de 1962 à 1971.

En haut



Déclin des populations d'amphibiens

Le crapaud doré (Bufo periglenes), a été un des premiers indicateurs du déclin des populations d’amphibiens. Considéré dans les années 1980 comme abondant dans son habitat au Costa Rica, il a été observé pour la dernière fois en 1989[1]. Les derniers chiffres de croissance de la population conformes à la normale datent de 1987. En 1988, seulement 8 mâles et 2 femelles ont été observés. En 1989, on n’a plus rencontré qu’un seul spécimen mâle, qui reste encore aujourd’hui le dernier individu observé.

Bien que les scientifiques observent une diminution des populations de plusieurs espèces en Europe depuis les années 1950, la prise de conscience du déclin des populations d'amphibiens pouvant entraîner des extinctions massives d'espèces dans le monde entier ne date que des années 1980. En 1993 déjà, plus de 500 espèces de grenouilles et de salamandres présentes sur les cinq continents présentaient un déclin de population. Aujourd’hui, le phénomène de déclin des populations d'amphibiens affecte des milliers d’espèces dans tous les types d’écosystèmes et est ainsi reconnu comme une des menaces les plus sévères, en terme d'espèces disparues ou menacées, à l'encontre de la biodiversité de notre planète,.

À l’origine, les rapports sur ce déclin n'étaient pas pris en considération par la totalité de la communauté scientifique. Certains scientifiques avançaient le fait que les populations animales, comme par exemple celles des amphibiens, connaissaient des fluctuations naturelles au cours du temps. Aujourd’hui, tous s’accordent à dire que ce phénomène de déclin prend une ampleur alarmante partout dans le monde,,,,,, et l’on s’attend à ce qu’il persiste encore longtemps.

Ces extinctions et chutes de populations d’amphibiens sont un problème mondial, aux causes diverses et complexes. Parmi elles figurent des facteurs locaux comme la fragmentation et la destruction des habitats naturels, ainsi que l'introduction par l’homme de nouveaux prédateurs dans les écosystèmes en question, la surexploitation des amphibiens (nourriture, médecine…), l’augmentation de la toxicité et de l’acidité des milieux de vie des amphibiens, l’émergence de nouvelles maladies, le changement climatique, l’augmentation des radiations ultraviolettes (conséquence des atteintes portées à la couche d’ozone) et les interactions probables entre ces facteurs.

Devant le nombre croissant d'espèces menacées, une stratégie de conservation s'est mise en place au niveau international afin de combattre les multiples causes du déclin des amphibiens. Les principaux moyens de lutte employés sont la protection des habitats naturels, l'élevage conservatoire, la réintroduction et l'éradication de certaines espèces invasives.

Le fait que la majorité des amphibiens aient un mode de vie à la fois terrestre et aquatique, et que leur peau soit très perméable laisse à penser qu'ils pourraient être plus vulnérables que les autres espèces de vertébrés terrestres, aux toxines présentes dans l’environnement, ainsi qu’aux modifications de température, de précipitations et d'hygrométrie. Les scientifiques commencent donc à considérer la biodiversité amphibienne comme un indicateur précurseur de référence, révélateur de la pollution engendrée par les activités humaines et des effets qu’elle pourrait avoir sur les autres espèces animales.

Les amphibiens forment un groupe d’organismes vertébrés regroupant environ 6 000 espèces connues, rassemblant les anoures (grenouille, crapaud, sonneur, rainette…), les urodèles (salamandres et tritons) ainsi que les gymnophiones (apodes ou cécilies). Le groupe des amphibiens existe depuis environ 360 Ma, et il a déjà été décrit, dans la seule période 1970-2000, l’extinction probable d’environ 168 espèces. De plus, au moins 2 469 espèces connues (43 % des amphibiens) présentent un déclin avéré de leurs populations, ce qui indique que le nombre d’espèces menacées d'extinction continue probablement d’augmenter.

Une convention internationale de biologistes réunis en 2004 a indiqué que 32 % des espèces d’amphibiens du monde entier étaient en danger d’extinction (ce qui représente 1 856 espèces) et que plus de 120 espèces se seraient déjà éteintes depuis 1980.

Les déclins de populations ont été particulièrement intenses dans l’ouest des États-Unis, en Amérique Centrale et en Amérique du Sud, ainsi que dans l’est de l’Australie. Ainsi en 2006, 16 des 45 espèces d'amphibiens du Canada (36 %) ont tellement diminué que celles-ci sont maintenant considérées en voie de disparition, menacées ou préoccupantes. Cependant, des cas plus isolés d’extinctions massives d’amphibiens surviennent dans divers endroits du globe. Ainsi, l'IUCN estimait en septembre 2006 qu'un quart des amphibiens méditerranéens sont menacés d’extinction. Alors que les activités humaines causent à présent des pertes considérables de biodiversité au niveau mondial, il apparaît que leurs conséquences sont nettement plus graves et intenses sur les amphibiens que sur d’autres groupes d’espèces.

Étant donné que les amphibiens ont généralement un cycle de vie composé de deux phases, la première aquatique (têtard) et la seconde terrestre (organisme adulte), ils sont naturellement sensibles à des dérèglements environnementaux tant terrestres qu’aquatiques. De plus, ils peuvent être, du fait de leur peau nue très perméable, plus vulnérables aux toxines présentes dans l’environnement que d’autres organismes comme les oiseaux ou les mammifères. De nombreux scientifiques sont d’ailleurs convaincus que le phénomène de déclin des amphibiens annonce la possibilité, dans un futur proche, d'un phénomène beaucoup plus large d’extinction massive de la biodiversité, s’étendant cette fois aux autres groupes d'êtres vivants, animaux et plantes,.

Le phénomène de déclin des amphibiens a été pour la première fois largement reconnu fin 1980, lorsqu’une assemblée d’herpétologistes a rapporté avoir repéré une régression globale des populations d’amphibiens. Parmi les espèces les plus touchées se trouvait le crapaud doré (Bufo periglenes) vivant dans la réserve de la forêt de nuage de Monteverde, qui était auparavant classé parmi les espèces communes du site. Le Bufo periglenes faisait à cette époque l’objet de nombreuses investigations scientifiques, jusqu’en 1987, date à laquelle sa population s’est mise à régresser pour finir par disparaître complètement en 1989. D’autres espèces de Monteverde, comme la grenouille Atelopus varius (littéralement en espagnol Rana arlequin, Grenouille arlequin), ont également disparu à cette époque. Ces individus étant localisés à l’intérieur d’une réserve naturelle, leur destruction ne pouvait être liée aux activités humaines de la région. Il fallait en chercher les causes à une échelle plus globale, ce qui a engendré une grande inquiétude chez les scientifiques concernés.

Des années 1950 à la fin des années 1980, certains chercheurs ont remarqué un déclin des populations d’amphibiens. Ce déclin était, selon eux un indice précurseur de la dégradation des milieux naturels. La communauté scientifique s'est montrée sceptique sur ce critère et sur l'importance de ce déclin. En effet, certains zoologistes avançaient que la population de la plupart des organismes, y compris celle des amphibiens, connaissait des variations naturelles. Le manque d’informations sur les fluctuations de populations sur un plus long terme ne permettait pas de déterminer si les observations faites étaient suffisantes pour conclure. Faute de consensus, il convenait donc d'attendre d'avoir les informations suffisantes pour mobiliser les ressources nécessaires à un programme de conservation.

Pour ce faire, on a amélioré les systèmes de surveillance des populations en affectant un nombre croissant d’étudiants aux projets d'observations directes de la mortalité des amphibiens pour déterminer le nombre et les causes des mortalités. Enfin, à la fin des années 1990, la communauté scientifique a reconnu dans son ensemble le déclin des populations d’amphibiens au niveau mondial et la grave menace que cela constitue pour la biodiversité.

En effet, les amphibiens jouent un rôle déterminant dans le maintien de l’équilibre des écosystèmes. Ils sont tantôt les proies, tantôt les prédateurs de nombreuses autres espèces. Les œufs et les têtards sont une riche source de nourriture pour les oiseaux et les poissons. À leur tour, les amphibiens consomment d’énormes quantités d’insectes, et quelques fois même des rongeurs. Ils peuvent former une portion importante de la biomasse des vertébrés dans certaines régions, dépassant les biomasses combinées des oiseaux et des mammifères. En dépit de leur taille modeste, les amphibiens jouent un rôle majeur dans les écosystèmes. Lorsqu'une espèce d'amphibien disparaît, cela peut entraîner la disparition en cascade de plusieurs autres espèces, en commençant par les espèces commensales comme par exemple la mulette du Necturus, dont le développement larvaire dépend de la présence de son hôte, le necture tacheté.

En se basant sur les recherches de James P. Collins et Andrew T. Storfer, deux ensembles d'hypothèses sur le déclin ont été échafaudés.

Le premier inclut les facteurs généraux concernant la crise de la biodiversité planétaire : destruction, modification et fragmentation des habitats naturels, introduction d’espèces invasives et surexploitation des ressources. L’étude de ces menaces permet une meilleure compréhension du déclin des amphibiens, dans ses aspects liés aux mécanismes écologiques globaux. Cependant, le déclin touche aussi des populations d’amphibiens dans des environnements reculés sans perturbations apparentes.

Le second en appelle à des facteurs plus complexes et plus élusifs, et est vraisemblablement constitué par le changement climatique, l’augmentation des radiations UV-B, le rejet de polluants chimiques dans l’environnement, de nouvelles maladies infectieuses émergentes, ainsi que les déformations ou malformations des organismes. Les mécanismes sous-jacents à ces derniers facteurs sont complexes et peuvent s’additionner aux premiers facteurs, ainsi la destruction des habitats et l'introduction d'espèces étrangères introduites exacerbe le phénomène de déclin.

Il n’y a pas une seule cause isolée au déclin des amphibiens. Tous les facteurs susdits menacent ces populations à des degrés plus ou moins élevés. La plupart des causes de ce déclin sont finalement biens comprises et expliquées. Au-delà des amphibiens, d’autres groupes d’organismes souffrent des mêmes perturbations.

La modification ou la destruction des habitats naturels est le facteur qui, à l'échelle planétaire, affecte le plus les populations d’amphibiens. Comme les amphibiens ont généralement besoin d’habitats tant terrestres qu’aquatiques pour survivre, une menace pesant sur un seul des deux habitats peut avoir des conséquences graves sur leurs populations. Les amphibiens sont donc plus vulnérables à la modification des environnements naturels que les organismes ne requérant qu’un seul type d’habitat,.

La fragmentation des habitats naturels survient quand les différentes zones propices à la vie des amphibiens sont isolées les unes des autres par des modifications à caractère physique, comme par exemple lorsqu’une aire boisée est entourée de toutes parts par des zones de cultures agricoles. Les petites populations qui subsistent dans ces fragments rémanents courent souvent un grand risque d’endogamie, de dérive génétique voire d’extinction dues à de faibles fluctuations de l’environnement.

Dans la plupart des pays européens, la disparition des zones humides porte sur des superficies très importantes. Ainsi en Suisse ces milieux se sont réduits de près de 90 % depuis 150 ans, voire de 100 % dans certains secteurs,. De 1953 à 1959, près de 66 % des habitats de reproduction du triton alpestre, du triton ponctué, du sonneur à ventre jaune, du crapaud commun, de la rainette verte, de la grenouille verte et de la grenouille rousse ont été détruits dans la partie supérieure de la vallée du Rhin par suite de remblayages et de constructions de routes.

Depuis les années 1950, beaucoup d'amphibiens de la région méditerranéenne deviennent très rares en raison de la destruction de leurs habitats,.

La destruction des zones humides constitue la principale cause de la raréfaction de la grenouille rousse (plus de 99 % d'extinction dans certains secteurs) et du crapaud commun pendant les années 1950 et 1960 en Grande-Bretagne.

Certaines espèces ne vivant pas sur leurs lieux spécifiques de reproduction doivent migrer pour atteindre les zones humides. Les individus reproducteurs s'exposent alors, à passer à l'aller et au retour dans des zones où leur sécurité n'est pas assurée. C'est le cas pour les traversées de route. Lorsque les lieux de ponte ne sont plus accessibles, un muret peut parfois suffire pour que la population disparaisse.

Les vocalisations sont essentielles à la reproduction de bon nombre d'amphibien. Une augmentation du bruit de fond occasionné par les activités humaines est peut-être aussi la cause d'une baisse de fertilité qui, à terme, cause un déclin. Une étude en Thailande a montré que, soumis aux bruits des activités humaines, les appels des amphibiens diminuaient pour certaines espèces et augmentaient pour d'autres. La relation entre bruit et déclin n'a cependant pas été montrée.

Les espèces prédatrices et concurrentes étrangères aux écosystèmes affectent la viabilité des amphibiens dans leurs propres habitats naturels. On a détecté un déclin de population chez Rana muscosa, espèce commune des lacs de la Sierra Nevada, aux États-Unis, dû à l'introduction d’espèces de poissons, notamment des truites élevées pour la pêche sportive ou récréative. Un grand nombre de jeunes individus et de têtards sont la proie de ces poissons. Ces poissons causent une interférence dans le cycle trisannuel de métamorphose des têtards et provoquent finalement un sévère déclin de la population et, par ricochet, touchent l'ensemble de l'écosystème. Ce phénomène est loin d'être unique, l'introduction du Lepomis gibbosus en Amérique du Nord a contribué à réduire les populations de Rana aurora et de Pseudacris regilla.

L'introduction de Gambusia pour lutter contre les moustiques, de la truite arc-en-ciel et de la truite fario pour la pêche est concomitante avec la baisse importante des effectifs de la Litoria spenceri dans le sud-est australien. Les zones d'introductions correspondant aux zones de baisse ne laissent aucun doute sur le rôle des espèces introduites.

L'introduction du ouaouaron, une grosse grenouille américaine, dans divers endroit du monde comme l'Europe, les Antilles, l'Amérique du Sud, est aussi une menace pour les autres amphibiens. En effet, le ouaouaron consomme directement des spécimens d'autres espèces plus petites que lui et est un concurrent efficace pour les autres.

Les amphibiens sont capturés, déplacés hors de leurs habitats naturels et vendus dans le monde entier comme aliments, comme animaux domestiques, ou pour approvisionner le marché pharmacologique. Pour plusieurs espèces, la récolte est présumée co-responsable de leur déclin. En France, l'importation légale de grenouille l'est essentiellement pour des raisons alimentaires, en comparaison les importations d'anoures vivantes pour l'élevage ou la science sont négligeables. La récolte de certaines espèces comme animaux de compagnie, du fait de leur protection car se raréfiant dans leur milieux naturel, est très souvent illégales et engendre des trafics lucratifs.

Les anoures et plus particulièrement leurs cuisses sont consommées par l'Homme, même si les grenouilles comestibles ne représentent pas plus d'une cinquantaine d'espèces. La plupart sont en effet toxiques et certaines ont des propriétés hallucinogènes. Les cuisses de grenouille sont extrêmement populaires en Europe, au Canada et aux États-Unis. En 1990, l’Europe a importé près de 6 000 tonnes de cuisses de grenouilles en provenance d'Asie. Selon leur ministère de l'agriculture, les Français ont consommé 3 500 tonnes de cuisses en 1994 soit 8 000 tonnes ou environ 30 millions de grenouilles dont la majorité provient d'importations. Entre 1981 et 1984, les États-Unis ont importé plus de 3 000 tonnes de grenouille par an soit environ 26 millions de grenouilles.

L’Asie est le second marché alimentaire majeur d’amphibiens dans le monde, où l’espèce la plus consommée est Hoplobatrachus rugulosus. En une année, plus de 6 millions de Hoplobatrachus rugulosus ont été exportés depuis la Thaïlande vers Hong Kong. On présume que toutes ces grenouilles sont capturées dans leur milieu naturel. Étant donné le nombre très élevé de grenouilles collectées, cette pratique pourrait en peu de temps mener à la destruction des populations sauvages restantes. Selon les statistiques douanières françaises, sur les 6 400 tonnes de cuisses importées en 2002, 3 300 proviendraient d'espèces sauvages d'Indonésie.

Une autre espèce surexploitée pour satisfaire le marché alimentaire américain est Rana aurora draytonii ((en) California Red-legged Frog, la Grenouille à pattes rouges de Californie), localisée dans l’ouest de la Californie. Bien que ces grenouilles soient actuellement sous protection fédérale, signalées comme espèce menacée, et que leur capture soit désormais interdite, leur population reste en danger du fait d'autres facteurs comme la concurrence d'espèces invasives introduites dans leur environnement naturel. En outre, le braconnage peut perdurer, les grenouilles vivantes ou sauvages valant plus cher que les grenouilles d'élevage. En France en 2005, quatre personnes ont été condamnées à des amendes pour pêche illégale.

Depuis longtemps, les enfants vont récolter des têtards dans les mares et les étangs avoisinants pour les élever chez eux et observer le processus de métamorphose au cours duquel ils deviennent adultes. Cependant, l'élevage des amphibiens comme NAC s’est popularisé ces dernières années, et il ne s’agit plus désormais des seuls enfants. De nombreux amphibiens sont vendus dans les magasins animaliers ; et certains payent très cher pour des grenouilles aux couleurs vives et brillantes dont bon nombre de spécimen sont prélevés directement dans la nature. En 2007, 16 espèces sont inscrites sur l'annexe I et 90 sur l'annexe II de la CITES. Non inscrite à cette date, la Conraua goliath, la plus grosse grenouille du monde, qui ne se rencontre, à l’état naturel, que dans quelques fleuves isolés au Cameroun et en Guinée Équatoriale, en Afrique occidentale, est concernée par la surexploitation. Cependant le principal danger lié à la détention de NAC est la diffusion de maladies aux espèces locales lors de libération d'espèces exotiques.

Certaines cultures asiatiques accordent aux amphibiens une place importante dans leurs thérapeutiques traditionnelles, certains amphibiens étant considérés avoir des vertus curatives ou aphrodisiaques. Les oviductes disséqués de Rana chensinensis et la peau de certains crapauds sont deux exemples de préparations courantes vendues en herbologie chinoise.

De nombreux crapauds du genre Bufo produisent une toxine appelée bufoténine ayant des propriétés hallucinogènes. Il existe également d’autres toxines, comme la 5-MeO-DMT (5-méthoxy-diméthyltryptamine) produite par le Bufo alvarius ((en) Sonoran Desert Toad, Crapaud du désert du Sonora). De nombreux crapauds sont donc collectés dans leur milieu naturel pour en extraire des toxines intéressantes. L’extraction de ces dernières impliquant nécessairement de tuer les crapauds, ces pratiques ont des effets très négatifs sur le maintien des populations naturelles.

Il est difficile de déterminer si, globalement, l’utilisation des amphibiens sur le plan thérapeutique a des effets néfastes sur les populations naturelles.

Les agents polluants chimiques, surtout dans les bassins où les têtards se développent, interviennent largement dans l’apparition de malformations (membres supplémentaires, yeux mal formés). Ces polluants ont des effets variables sur les grenouilles : certains atteignent et altèrent le système nerveux central, alors que d’autres, comme l'atrazine, un herbicide, causent un arrêt du processus de production et de sécrétion des hormones entraînant ainsi la stérilité des adultes. Des études expérimentales ont montré que l’exposition à d'autres herbicides comme le Roundup ou à certains insecticides comme le malathion ou le carbaryl provoque une nette hausse de la mortalité chez les têtards. Des études additionnelles indiquent que les amphibiens se développant en milieu terrestre sont également vulnérables au Roundup et plus particulièrement à l’un de ses composants, le POEA (Polyoxyéthylèneamine) qui est un agent tensioactif, mouillant (favorisant la dispersion des gouttelettes sur les plantes traitées) et non pas un pesticide.

Des années 1950 aux années 1970, les populations d'amphibiens de la région méditerranéenne, déjà très touchées par les destructions d'habitats, peuvent être fortement affectées par l'utilisation excessive d'insecticides. Après l'épandage d'insecticides dans les marais d'Aygade par la municipalité de Hyères, 5 000 rainettes méridionales ont été trouvées mortes le 8 mars 1958. Cette pulvérisation des localités touristiques françaises de la Côte d'Azur a pratiquement éliminé les populations locales de triton palmé, de triton marbré et de salamandre tachetée.

Dans la plaine hongroise, le crapaud commun est devenu une espèce rare dans les années 1960, ses populations ayant souffert d'un recours croissant aux herbicides.

En Angleterre, de 1965 à 1970, les populations de grenouilles se sont réduites dramatiquement dans les comtés d'Essex, du Surrey et du Kent principalement en raison de la pulvérisation au DDT des étangs et fossés. Dans ce pays, le déclin de la grenouille rousse est également attribué à l'utilisation d'un herbicide.

Nitrates : Selon une publication de 1999, 20 % environ des bassins des états et des provinces bordant les Grands Lacs présentaient des teneurs en nitrates supérieures à celles qui peuvent causer des anomalies du développement et d'autres effets sublétaux chez les amphibiens, et 3 % une teneur en nitrates suffisante pour les tuer. Les concentrations de nitrates requises pour tuer 50 % de têtards de certaines espèces d'amphibiens (études faites en Amérique du Nord) sont de 13 à 40 parties par million (ppm). De faibles concentrations (de 2 à 5 ppm) ont chez certaines espèces d'amphibiens des effets chroniques : nage réduite, malformations au cours du développement.

Pesticides : Ils s'étendent bien au-delà des zones cultivées, jusqu’à des zones vierges de toute activité humaine, comme on a pu l’observer dans le Parc national de Yosemite en Californie et ailleurs dans de nombreuses analyses de pluies. Outre l'empoisonnement direct par les pesticides (insecticides en particulier, souvent mortellement dangereux pour d'autres animaux à sang froid que les insectes), ces produits chimiques peuvent agir comme perturbateurs endocriniens. Ils imitent les hormones naturelles et peuvent produire de subtils effets sublétaux. Par exemple, certaines substances chimiques imitent l'œstrogène et empêchent les jeunes mâles de se développer normalement. L'atrazine, mise sur le marché en 1958, est connue pour augmenter des maladies d'origines fongiques et virales chez les amphibiens depuis les années 1990. Elle entraîne un effet immunosuppresseur de 20 % sur certaines larves de salamandre lorsqu'elle est combinée à un engrais tel que le nitrate de sodium.

Acidification : Les pollutions acides sont nombreuses dans l'environnement et surtout des eaux. Les pluies acides, ou neiges acides dans le nord, ne menacent souvent pas directement les amphibiens qui sont capables de survivre dans des eaux passablement acides (pH 4), mais elles tuent certains insectes qui constituent leurs proies et pourraient favoriser certaines pathologies. De plus elles favorisent la circulation et la bioassimilation de métaux lourds autrement piégés dans le sol ou dans ses complexes argilo-humiques.

D’autres études ont montré qu’une exposition à la pollution par l’ozone troposphérique pouvait également être un facteur contribuant au déclin mondial des amphibiens.

L'effet de la pollution chimique peut être différé : la mort d'adultes peut en effet survenir seulement au cours de la saison de reproduction du fait de la mobilisation de toxiques liposolubles stockés l'été précédent en consommant des aliments contaminés.

Des parasites appelés trématodes (embranchement des Plathelminthes) interviennent dans le développement d’anomalies chez les Amphibiens, et donc dans leur déclin. Ces Trématodes, du genre Ribeiroia, ont un cycle de vie complexe puisqu’ils affectent successivement trois types d’espèces-hôtes. Les trématodes affectent tout d’abord certaines espèces aquatiques de gastéropodes pulmonés (escargots). Puis, arrivés au stade larvaire, ils se transmettent aux têtards où les métacercaires (larves) enkystées s'insinuent à l’intérieur des bourgeons de membres, ce qui engendre des anomalies post-métamorphiques chez les grenouilles adultes, à savoir l’absence de membres ou au contraire la présence de membres supplémentaires. Ces anomalies affectent gravement la vulnérabilité des amphibiens par rapport à leurs prédateurs, et notamment aux oiseaux des zones humides, derniers hôtes des Trématodes.

En 1998, les équipes scientifiques ayant mené des recherches sur les causes de la mortalité à grande échelle d’amphibiens en Australie et en Amérique Centrale sont arrivées aux mêmes conclusions : une espèce fongique pathogène qui n’avait jamais été décrite auparavant, Batrachochytrium dendrobatidis, était responsable d’infections mortelles. On sait aujourd’hui que la plupart des extinctions des espèces de ces régions sont liées à ce champignon, lequel appartient à une famille de micro-organismes saprophytes connue sous le nom de Chytrides (Chytridiomycota) et qui, en règle générale, n’ont pas de propriétés pathogènes.

Cette maladie engendrée par Batrachochytrium dendrobatidis est appelée chytridiomycose. Les grenouilles infectées présentent des troubles neurologiques, des lésions cutanées et une hyperkératose, qui provoquent peu à peu l’impossibilité de respirer par la peau , et à terme la mort de l’animal. Des études expérimentales ont montré que le temps écoulé entre l’infection et la mort était de une à deux semaines.

Des recherches subséquentes ont montré que le champignon est présent en Australie depuis le milieu des années 1970 et en Amérique du Nord depuis 1974 sur Rana pipiens. Il est présent en Espagne depuis la fin des années 1990. Il a également été découvert en Allemagne sur des NAC amphibiens. La première description connue de l’infection chytrique chez les Amphibiens fut faite sur la grenouille africaine Dactylère du Cap. Et comme ces xénopes sont vendues en animaleries et utilisées dans des laboratoires du monde entier, il est possible que le champignon se soit transmis depuis l’Afrique jusqu’aux Amériques et à l’Australie. En Australie en 2006, il touchait 22 % des espèces.

Aeromonas hydrophila est répartie sur l'ensemble des eaux douces ou peu saline de la planète. Les Aeromonas hydrophila sont plus abondantes au court des saisons chaudes mais capables de se multiplier dès que les températures sont supérieures à 5 °C. Chez les amphibiens ces souches provoquent une flaccidité des muscles, des hémorragies, des ulcérations cutanées et parfois une septicémie foudroyante. Elles ne sont pas seulement pathogènes pour les grenouilles, mais aussi pour les poissons, tortues, mammifères.

Il existe en fait plusieurs dizaines de souche d’Aeromonas hydrophila, dont A. h. subsp. hydrophila et A. h. subsp. ranae sont mortelles pour les amphibiens. Plusieurs études ont montré le potentiel d'effets interactifs ou synergétiques entre les pesticides et l’A.h., sur la réduction des populations.

Une des souches a été repérée pour la première fois chez Rana muscosa, dans le Parc national Kings Canyon en Californie. On pense qu’elle est responsable des morts massives de Rana muscosa en 1979, de même que de celles du Bufo boreas (Crapaud de l'ouest ou boréal).

La nécrose hématopoïétique épizootique est une infection virale causée par un Iridoviridae, un virus à ADN. On pense que certains d'entre eux sont responsables ou co-responsables de taux de mortalité extrêmement élevés et localisés d'amphibiens comme par exemple sur une espèce de salamandre en 1995-1996, la plaçant en danger d'extinction. En 1997 et 1998, des virus de cette famille ont provoqué la mort de salamandres tigrées et de Rana sylvatica en Saskatchewan et de salamandres tigrées au Manitoba,.

Une grande quantité d’écosystèmes sont détruits à un rythme accru, diminuant la disponibilité d'habitats naturels. Outre le fait que la pollution atmosphérique affecte directement ou indirectement les amphibiens très sensibles aux toxines, elle provoque également un réchauffement de la planète par effet de serre particulièrement nocif. En effet, la perméabilité de leur peau, la dualité aquatique-terrestre de leur cycle de vie biphasique et leurs œufs dépourvus de coquille protectrice les rendent extrêmement vulnérables même aux faibles écarts de température et d’hygrométrie.

La compréhension des mécanismes inhérents aux hypothèses de changement climatique présente une complexité majeure. Le changement climatique peut affecter une région directement ou bien engendrer une série d’événements successifs et avoir ainsi un effet indirect sur une région éloignée du foyer des anomalies climatiques. Ainsi les hypothèses de changement climatique sont-elles intrinsèquement complexes car elles peuvent affecter les individus et les populations directement, ou bien indirectement en prenant dans ce cas parfois des années voire des décennies avant de se manifester. Parmi les effets du réchauffement planétaire, nous pouvons citer, par exemple, la croissance ou la reproduction prématurée des individus de certaines espèces d’amphibiens vivant en climats tempérés,, qui se retrouvent ainsi confrontés à un environnement hostile (absence de nourriture, ...), caractéristique de saisons plus froides pendant lesquelles ils sont censés hiberner.

Une série d’études menées dans des environnements tropicaux a prouvé l’existence d’une relation de cause à effet entre irrégularités climatiques et déclins populationnels. Au Brésil, on a décrit l’extinction de 5 espèces de crapauds, conséquence d’une série de gelées. On a également détecté, toujours au Brésil, que les déclins des populations d’amphibiens pouvaient être reliés à des hivers plus secs. À Porto-Rico, on a également prouvé les connexions existant entre le dramatique déclin de la population d’Eleutherodactylus coqui (en espagnol Coquí) et le nombre croissant de longues périodes de sécheresse (caractérisées par un niveau de précipitations inférieur à 3 mm). De la même manière, on a pu clairement relier l’extinction du Bufo periglenes ((es) Sapo dorado, Crapaud doré) de Monteverde, et le déclin d’autres espèces d’amphibiens de la région, avec les irrégularités fréquentielles de l’indice d’hygrométrie du brouillard ambiant des forêts tropicales de Monteverde.

D’autres études ont montré la réduction, durant les périodes de grande sécheresse, de la profondeur des mares dans lesquelles certaines espèces d’amphibiens déposent leurs œufs. Cette diminution de profondeur d'eau engendre une plus forte exposition des embryons aux rayons UV-B, ce qui augmente la vulnérabilité aux maladies comme celle due au champignon Saprolegnia ferax qui provoque la mort des œufs,,. Leur patrimoine génétique est alors altéré et leur système immunitaire déficient. Dans certaines mares où le niveau de l'eau est trop bas, la mortalité des embryons atteint 100 %. La diminution des réponses immunitaires chez les amphibiens entraîne également une plus grande sensibilité aux attaques de parasites comme le ver nématode Ribeiroia ondatrae, de champignons (dont Batrachochytrium dendrobatadis identifié en 1998 et provoquant de lésions de la peau) ou encore de virus du type Ranavirus.

Les niveaux de radiation UV-B dans l’atmosphère ont augmenté de manière significative au cours des dernières décennies. Les chercheurs ont montré que les radiations UV-B peuvent tuer les amphibiens directement, en agissant conjointement avec la pollution, les agents pathogènes et le changement climatique, pour causer chez eux des effets secondaires comme des retardements de croissance ou des dysfonctionnements immunitaires, entraînant leur mort et donc leur déclin.

Il existe trois types de radiations ultraviolettes: les UV-A (de longueur d’onde comprise entre 315 et 400 nm) ; les UV-B (entre 280 et 315 nm) et les UV-C (entre 200 et 280 nm). La majorité des biomolécules n’absorbent pas les radiations de longueurs d’onde équivalentes à celles des UV-A, et une grande partie de la radiation UV-C est absorbée par l’ozone stratosphérique (couche d'ozone). Ne restent que les radiations UV-B, qui, à forte dose, ont des effets particulièrement nocifs sur les organismes vivants.

La radiation UV-B, suite au réchauffement climatique et à l’amincissement de la couche d’ozone stratosphérique, a augmenté de façon notable. Les amphibiens sont extrêmement vulnérables à la radiation UV-B du fait que leurs œufs sont dépourvus de coquille protectrice et que leur peau, chez les spécimens adultes comme chez les têtards, est fine et délicate. Il est hautement probable que cette augmentation de la radiation UV-B contribue de manière significative au déclin des amphibiens.

Des recherches menées sur plus de 10 espèces d’amphibiens ont montré qu’une enzyme, la photolyase, était capable de réparer les dommages causés à l’ADN par les radiations UV-B. Des expériences faites en laboratoire sur des œufs de la salamandre Ambystoma gracile ont prouvé leur vulnérabilité aux radiations UV-B. Il est probable que les espèces d’amphibiens disposant d’une importante activité enzymatique (de type photolyase) peuvent réparer les dommages causés à l’ADN par l’exposition aux UV-B de manière plus efficace que d’autres espèces ayant une faible activité enzymatique de ce type.

On a noté depuis quelques années une augmentation des observations de difformités ou de malformations dans les populations naturelles d’amphibiens ; ce phénomène a récemment été classé parmi les plus importants problèmes environnementaux.

Au cours de l’été 1995, un rapport établi par un professeur d’une école de Le Sueur, Minnesota, à propos des déformations rares chez Rana pipiens ((en) Northern Leopard Frog, Grenouille léopard), a mené à l’ouverture d’une enquête par l’Agence de contrôle de la pollution du Minnesota, laquelle a montré que 30 % à 40 % des grenouilles présentes sur le lieu des observations présentaient des malformations. Par la suite, les biologistes ont compris que ces anomalies n’étaient pas circonscrites au Minnesota, et que l’on décrivait ce genre de malformations (grenouilles et tritons avec plus de quatre pattes ou seulement deux) chez des amphibiens du monde entier (près de 80 % dans les secteurs les plus touchés).

Il y a déjà eu de grands débats sur les malformations survenues chez les amphibiens dans leur milieu naturel au cours desquels on s’est rendu compte qu’il était difficile d’en déterminer les causes. Il est relativement aisé de provoquer des malformations sur des embryons élevés en laboratoires, mais celles-ci ne correspondent pas toujours à celles qui sont observées dans la nature. Par ailleurs, on ne sait pas vraiment si le taux de malformations observées chez les amphibiens a réellement augmenté au cours des dernières années, ou si l’augmentation du nombre d’observations est due tout simplement à la plus grande attention portée à ce sujet.

Malgré ces incertitudes, les malformations sont vues comme le résultat de causes multiples, qui ne se lient pas toutes aux dommages causés à l’environnement par les activités humaines. L’hypothèse principale impute l’augmentation du nombre de malformations chez les amphibiens à une augmentation des niveaux de radiations ultraviolettes (UV), du taux de pollution chimique et des parasitoses.

Le Global Amphibian Assessment a créé un plan d’action pour la conservation des amphibiens. Ce plan s’articule autour de quatre objectifs à très court terme : l'amélioration de la compréhension des causes des déclins populationnels et des extinctions ; la diffusion d'informations sur la diversité biologique des Amphibiens et sur les changements qu’elle connaît ; le développement et l'implémentation de programmes de conservation sur le long terme ; l'apport de réponses d’urgence aux crises actuelles.

C'est la Global Amphibian Assessment, une organisation issue de l'IUCN, qui a essayé de dresser un bilan au début des années 2000, concernant les causes de disparition. Cette volonté a débouché sur une étude qui étudiait trois zones protégées où la disparition « énigmatique » d’espèces a été enregistrée : le parc national de Yosemite, la réserve de Monteverde et le parc national d'Eungella. D'autres ont suivi, offrant des conclusions similaires, un déclin rapide et important.

Le 16 février 2007, des scientifiques du monde entier se sont réunis à Atlanta, aux États-Unis, pour donner naissance à un groupe dénommé Amphibian Ark, dans l’optique de sauver plus de 6 000 espèces d’amphibiens de l’extinction possible causée par la chytridiomycose. Cet organisme est un partenariat entre l'Association mondiale des zoos et des aquariums membre de l'IUCN et plusieurs sections pour la conservation des espèces de l'UICN dont celle des amphibiens. Le but de l'Ark est d'aider ses partenaires pour une conservation ex-situ et de protéger les sites naturels. Une autre de ses attributions est d'identifier les taxons réellement en danger puisqu'il existe une incertitude de menace sur près de 23 % des espèces. Enfin, l'Ark organise des campagnes de presse à destination des pouvoirs publics et de la population pour faire prendre conscience du danger de l'extinction massive qui pèse sur les amphibiens, comme par exemple la campagne Year of the frog qui sera lancée en 2008.

En haut



Allélopathie

L’allélopathie est l'ensemble des interactions biochimiques directes ou indirectes, positives ou négatives, d’une plante sur une autre (micro-organismes inclus) au moyen de métabolites secondaires tels les acides phénoliques, les flavonoïdes, les terpénoïdes et les alcaloïdes.

Ces composés allélochimiques jouent un rôle important dans la compétition aux ressources environnementales que sont l’eau, la lumière et les substances nutritives ; dans l’armement chimique de défense des plantes contre leurs prédateurs, et dans la coopération intra- et interspécifique.

L’incorporation de ces substances allélopathiques dans la gestion de l’agriculture peut réduire l’utilisation d’herbicides, de fongicides et d’insecticides ; aussi diminuer la détérioration de l’environnement.

Le terme d’allélopathie a été introduit pour la première fois par Hans Molisch, scientifique autrichien, en 1937 pour décrire les interactions biochimiques néfastes et bénéfiques entre tous les types de plantes incluant les micro-organismes. Elroy Leon Rice, en 1984, renforce cette définition dans sa monographie sur l’allélopathie (la première sur ce sujet) : « Tout effet direct ou indirect, positif ou négatif, d’une plante (micro-organismes inclus) sur une autre, par le biais de composés biochimiques libérés dans l’environnement ».

Ces composés biochimiques sont appelés composés allélochimiques. Ils peuvent être classés en grande partie comme métabolites secondaires, qui sont généralement considérés comme étant des composés ne jouant aucun rôle dans le processus du métabolisme essentiels à la survie des plantes.

On trouve parmi ces composés des acides phénoliques, des flavonoïdes, des terpénoïdes, des alcaloïdes, et des glucosinolates. Ces produits allélochimiques sont présents dans pratiquement tous les tissus de la plante; des fruits, des fleurs, des feuilles en passant par la tige aux racines et rhizomes. Aussi au niveau du pollen et des graines.

Ils sont libérés de la plante à l’environnement au moyen de quatre processus écologiques : volatilisation, lixiviation, exudat racinaire et décomposition des résidus de la plante.

Les interactions allélopathiques sont souvent le résultat d’action jointes de plusieurs composés différents. Les activités biologiques des plantes réceptrices sont dépendantes de la concentration des produits allélochimiques c’est-à-dire qu’il y a émission d’une réponse que lorsque la concentration en produits allélochimiques atteint une certaines valeurs seuil.

L’interférence qui s’établit entre plantes voisines est attribuée principalement à des effets de compétition pour les ressources environnementales : eau, lumière et substances nutritives. Ainsi de nombreuses espèces végétales synthétisent des molécules capables d’inhiber la germination et la croissance des plantes croissant dans leur voisinage. Aussi faute de mobilité, les plantes ont du s’adapter aux attaques prédatrices d’autres organismes tels les insectes, les champignons et les bactéries ; cela par des mécanismes chimiques de défense pouvant avoir plusieurs fonctions. Ils peuvent être insecticides anti-microbiens voire pour certains herbicides. Actuellement, plus de 30 000 métabolites secondaires sont connus et ce grâce à l’analyse phytochimique de plantes supérieurs.

Une des singularités des végétaux est de former de nombreux composés dont le rôle, au niveau de la cellule, ne semble pas nécessaire tout en pouvant l’être au niveau de la plante entière. Le fait que ces composés ne se rencontrent pas chez toutes les espèces indique qu’ils n’entrent pas dans le métabolisme général et qu’ils n’exercent pas de fonction directe au niveau des activités fondamentales de l’organisme végétal : ce sont des métabolites secondaires.

Ces composés allélochimiques sont généralement des molécules de bas poids moléculaire qui peuvent être hydrophiles ou lipophiles. Parmi ces composés on trouve des acides phénoliques, des quinones et des terpènes. On peut citer la catéchine, l’acide élagique, la tellimagrandine, l’acide salicylique, l’acide ferulique parmi les polyphénols ; la p-benzoquinone et la DMBQ parmi les quinones ; 1,8cinéole, 1,4cinéole, pinène parmi les monoterpènes.

Les composés allélopathiques se comportent comme des herbicides naturels ; ils ont souvent plusieurs sites d’action et des effets divers sur les organismes cibles. Certains allélochimiques agissent en inhibant la photosynthèse ce qui ralentit la croissance des phototrophes. La B-1,2,3-tri-O-galloyl-4,6- (S)-hexahydroxyphenoyl-d-glucose (tellimagrandine II) inhibe le PSII en empêchant le transfert d’électrons entre les quinones Qa et Qb (Leu et al, 2002), tout comme la p-benzoquinone du sorgho Sorghum bicolor. La cyanobactérine de Scytonema hofmannii inhibe le transport d’électrons au-niveau du site accepteur du PSII. La fischerelline A de Fischerella sp interrompt le transport d’électrons à quatre endroits différents.

Les acides phénoliques peuvent perturber l’absorption minérale par la plante : l’acide salicylique (o-hydroxybenzoate) et l’acide ferulique (4-hydroxy-3-mthoxycinnamate) inhibent l’absorption d’ions K+ dans les racines d’Avena sativa. Le degré d’inhibition dépend de la concentration de l’acide phénolique et du pH (la diminution de pH entraîne une augmentation de l’absorption des composés phénoliques et donc de l’inhibition). Cette perturbation est due au fait que les acides phénoliques dépolarisent le potentiel membranaire des cellules racinaires ce qui modifie la perméabilité membranaire et ainsi le taux d’effluve d’ions, aussi bien anions que cations. L’étendue de la dépolarisation croît avec l’augmentation de la concentration en acides phénoliques, spécialement avec l’acide salicylique.

Les quinones génèrent des oxygènes activés, responsables de leur toxicité.

Certaines substances agissent sur l’expression des gènes des organismes cibles. La DMBQ (quinone) émise par les racines hôtes induit le développement de plantes parasites en régulant l’expression de certains gènes, impliqués dans la régulation du cycle cellulaire, la synthèse d’actine et de tubuline, l’extension des parois végétales et synthèse de GTP binding protein. La l-carvone de Mentha spicata, ses dérivés (limonène, p-cymène et isoprène) et plus généralement les terpénoïdes avec un motif p-menthane insaturé induisent l’expression des gènes bph des bactéries du genre Arthrobacter, responsables du catabolisme des PCB.Il existe probablement un récepteur aux structures isoprènes trouvées dans les monoterpènes, responsable de la régulation de l’expression de ces gènes. Mais les différents procédés par lesquels de nombreuses plantes sélectionnent les génotypes cataboliques bactériens en réponse aux pollutions sont mal connus.

Beaucoup de classes de monoterpènes volatiles inhibent la croissance végétale comme le 1,8cineole, le 1,4cineole, le pulegone, l’alpha et le beta pinène. Le 1,4cineole inhibe la croissance des racines de certaines herbes en inhibant l’Asn-synthase au-niveau du site de liaison de la glutamine.

L’inhibition de la croissance végétale est plus forte durant les premiers stades de développement de la plante émettrice. Les jeunes plantes de cresson (Avena caudatus ) se protègent en émettant par les racines de la lepidimoide et des polysaccharides qui affectent la croissance et la différenciation des plantes ou des microorganismes. Le degré maximal d’inhibition du sorgho est atteint après 4 semaines de croissance. La décomposition des résidus de la plante peut soit inhiber ou stimuler la croissance des plantes voisines ; l’inhibition la plus sévère apparaît au stade le plus tôt de la décomposition, ensuite l’inhibition décline pendant que la stimulation émerge graduellement.

Les éliciteurs des réactions de défense ont des molécules capables d’induire au moins l’une des réponses typiques de défense, comme la synthèse de phytoalexines, cela en l’absence de toute infection. Deux classes d’éliciteurs ont été caractérisées : les éliciteurs généraux tels que ceux provenant d’agents pathogènes (exogènes) et ceux produits par les plantes (endogènes) et les éliciteurs spécifiques. Les éliciteurs généraux, de natures polysaccharidique, lipidique, ou (glyco)protéique ne reproduisent pas la spécificité de reconnaissance gène pour gène, contrairement aux éliciteurs spécifiques. Trois types majeurs d’éliciteurs de nature polysaccharidique ont été identifié : les β-1,3 et β-1,6 glucanes et la chitine provenant des parois fongiques et les oligogalacturonides, résidus d’acides galacturoniques en liaison α-1,4 dérivés de la pectine des parois végétales. La nature et l’intensité des réponse de défense induites par ces éliciteurs dépendent de leur degré de polymérisation et de la plante. Ils interviennent probablement comme signaux de deuxième génération dans la cascade de réception-transductionparticipant à l’expression des réponse de défense. Parmi les éliciteurs de nature lipidique, l’acide arachidonique et d’autres acides gras insaturés génèrent les oxylipines, efficaces dans l’activation de la synthèse de phytoalexines. Les plantes qui influencent la structure des communautés bactériennes en réponse à une pollution du sol sont celles dont les racines sont perméables aux polluants.

Ils sont libérés de la plante à l’environnement au moyen de quatre processus écologiques : volatilisation, , exudat racinaire et décomposition des résidus de la plante. Le maximum d’effet se produit près des racines.

Le degré d’inhibition peut dépendre du pH du milieu qui facilite plus ou moins l’entrée des allélochimiques dans les cellules cibles. Le poly acétylène et le thiophène sont plus bioactifs après exposition aux UV-A. Leur effet inhibiteur est activé par la lumière. Certaines substances n’ont d’impact sur les organismes cibles que lorsqu’ils sont exposés à un apport constant de composés fraîchement émis. Des effets de synergie entre les différents composés présents dans les exudats végétaux peuvent être observés. Les effets négatifs sur les organismes cibles, par exemple une inhibition, n’atteignent jamais 100% d’efficacité pour ne pas favoriser l’émergence de résistance.

La toxicité d'une molécule est toujours relative et une molécule toxique ou repoussante pour certaines espèces peut être attractive pour d'autres, qui ont contourné ou détourné à leur profit les voies de toxicité.

La synthèse et l'utilisation effective des substances chimiques de défense est un compromis permanent entre coût et bénéfice pour le végétal. Ces mécanismes sont à mettre en relation avec le coût énergétique de la synthèse des molécules de défense.

Il s’agit ici de la version stricte de l’allélopathie : excrétion ou exudation par les plantes de substances inhibitrices qui réduisent ou empêchent la croissance d’autres plantes dans le voisinage.

On considère l'allélopathie comme une stratégie active de compétition, car elle joue sur la capacité des individus à diminuer les performances d'autres individus. La fonction de relation des végétaux repose sur l'extraordinaire spécificité de leurs métabolites secondaires.

C'est pourquoi l'inhibition peut être spécifique et, dans certains cas, sur les individus de la même espèce plus que les autres.

On peut considérer qu’il ne s’agit pas ici de réellement entrer en compétition mais de prévenir une croissance excessive dans un environnement hostile (désert) sous des conditions temporairement favorables car les ressources sont fonction du nombre d'individus de la même espèce présents sur le territoire hostile. En limitant leur croissance, ces individus peuvent ainsi subvenir à leur développement tout en préservant leur capacité à être compétitifs, à s'adapter à leur milieu. Par exemple, si les arbustes du désert répondaient immédiatement à une forte pluie par une croissance rapide, ils pourraient outrepasser leur capacité à survivre à une période de sécheresse, à laquelle ils sont préparés par un faible développement de leur organisme.

La compétition entre diverses espèces est la compétition interspécifique. Elle s'instaure pour l'appropriation d'une ressource présente en quantité limitée dans l'environnement. Il peut s'agir d'une ressource nutritive (lumière, eau, sels minéraux), ou d'une appropriation de l'espace. Les végétaux étant immobiles, ils bénéficient de vastes surfaces d'échanges avec l'environnement souterrain et aérien pour parvenir à leurs besoins d'organismes autotrophes fixés. Plus sa surface d'échanges est grande, plus le végétal collecte des signaux lui permettant de moduler son développement vers une exploitation efficace des ressources de son milieu.

Le végétal soumis à la compétition protège et défend ses surfaces d'échanges grâce à des métabolites secondaires.

La plupart des individus en compétition sont donc sujet à une inhibition tandis que la production totale de biomasse tend vers un maximum. On parle de plantes cibles qui captent les composés toxiques.

Les facteurs produits par le système racinaire jouent ici un rôle important, avec une faible contribution des feuilles.

Les genres Artemisia et Eucalyptus émettent du 1,8cineole, un puissant agent allélochimique qui inhibe la croissance de plusieurs herbes.

Une plante peut émettre plusieurs composés allélopathiques différents. Une substance allélopathique est plus ou moins spécifique vis-à-vis des organismes cibles, elle peut agir sur plusieurs espèces, plus ou moins éloignées phylogénétiquement.

L’arbre Ailanthus altissima émet de l’ailanthone, inhibiteur de croissance de Brassica juncea, Eragrostis tef, Lemna minor et Lepidium sativum. Les extraits de cet arbre, qui contiennent également comme composés actifs les quassinoïdes (triterpènes dégradés), l’amarolide, l’acétyl amarolide et la 2-dihydroxyailanthone, ont aussi un effet inhibiteur sur la croissance des insectes Pieris sp, Platyedra sp et les pucerons.

Les effets de ces substances volatiles libérées dans le sol et dans l'air sont nombreux : on peut citer l'inhibition de la mitose au niveau des méristèmes racinaires, la diminution de l'ouverture des stomates , l'inhibition de certaines enzymes, de la synthèse protéique. Les racines exudent une grande variété de molécules de faible poids moléculaire dans la rhizosphère. La rhizosphère est un lieu important d’interaction entre racines, pathogènes, microbes bénéfiques et invertébrés.

L’allélopathie concerne aussi le monde aquatique, chez les angiospermes, les épiphytes et le phytoplancton.

L’angiosperme d’eau douce Myriophyllum spicatum (Haloragaceae) émet des polyphénols algicides et cyanobactéricides (acide élagique, catéchine…), dont le plus actif est la tellimagrandine II, qui inhibe la photosynthèse des cyanobactéries et d’autres phototrophes et inactive les enzymes extracellulaires de ces organismes par complexation.

Les cyanobactéries Scytonema hofmannii (par le biais de la cyanobactérine) et Fischerella muscicola (via la fischerelline A) agissent de la même manière sur la photosynthèse.

L’interaction allélochimique est aussi importante pour la compétition dans le zooplancton, par exemple, la population du copépode Diaptomus tyrreli est réduite en présence de substances émises par le copépode Epischura nevadensis.

Les végétaux sont autotrophes. Cependant certains sont incapables de se nourrir seuls et vivent en parasites. Le parasitisme est défini comme une relation interspécifique durable où l'un des partenaires, le parasite, vit aux dépens du second, l'hôte, qui se trouve lésé par cette association. L'hôte représente ainsi le milieu de vie du parasite. La mise en place de la relation parasitaire constitue une étape cruciale dans le cycle de vie du parasite et dépend de la rencontre des deux partenaires. Un des exemples les plus connus est celui du gui, mais il y a de nombreux parasites (3000 à 5000 espèces) qui sont classés selon le terme hémiparasite ou holoparasites, selon leur capacité à effectuer la photosynthèse.

Lors de la sortie de la dormance des graines de l’hémiparasite Striga asiatica, un haustorium se développe en formant une structure racinaire massive pluricellulaire spécialisée qui envahit les racines hôtes et sert de conduit physiologique entre le parasite et l’hôte pour absorber les ressources de la plante. Le passage de la vie autotrophe à la vie hétérotrophe par le développement des haustoria chez les hémiparasites de la famille des Scrophulariaceae est déclenché par l’application aux racines du parasite de facteurs racinaires de la plante hôte. Plusieurs quinones et phénols provoquent ce phénomène en jouant sur les potentiels osmotiques de la plante hôte. Cela va modifier sa structure et donner un signal au parasite de lancer la morphogénèse de l'haustorium.

Le principal composé est la 2,6-dimethoxybenzoquinone (DMBQ). Elle est relâchée dans la rhizosphère dans les exudats racinaires ou issue de l’oxydation des acides phénoliques, composant majoritaire de ces exudats.

Les racines exercent une influence sélective sur les communautés bactériennes qui est en partie spécifique de la plante.

Les plantes peuvent augmenter la disparition des contaminants des sols en stimulant l’activité microbienne de dégradation.

De nombreuses plantes, dans des environnements différents et en réponse à différents polluants, enrichissent les populations de bactéries endophytiques et de la motte racinaire en génotypes cataboliques. L’enrichissement est dépendant de la nature et de la quantité de contaminants mais aussi des espèces de plantes. Ces bactéries protègent vraisemblablement les plantes des effets toxiques des polluants.

Les composés allélopathiques peuvent donc jouer un rôle dans la phytoremédiation grâce a leur activité importante dans les signaux d'information entre la bactérie et la plante.

Les relations des végétaux avec les micro-organismes ne sont pas toujours conflictuelles. Certaines sont des symbiotes tout aussi complexes que les relations entre agents pathogènes et la plante et aux conséquences tout aussi importantes pour l'agriculture.

Il existe des ressemblances de structure et de fonction entre le parasitisme et la symbiose. Certains parasites peuvent devenir symbiotes et inversement selon l'environnement, l'état physiologique du végétal et la variabilité génétique des protagonistes.

Associations d'un champignon en et d'une racine, les mycorhizes sont la symbiose la plus répandue sur terre. Outre leur rôle dans la nutrition du végétal elles contribuent à protéger les racines contre une infection par des micro-organismes pathogènes du sol.

Associations d'une bactérie ou d'une cyanobactérie et généralement d'une racine, elles sont plus spécifiques de certaines familles des végétaux.

Les métabolites jouent un rôle très important dans le processus de reconnaissance entre symbiotes et hôtes. Car celui- ci implique un dialogue chimique entre les protagonistes via des signaux moléculaires qui sont des flavonoïdes.

Le cas des nodosités est le plus connu: le végétal produit des flavonoïdes qui attirent les bactéries et stimulent leur production de facteurs de nodulation. Le végétal perçoit chimiquement ces facteurs NOD par des récepteurs et produit en retour plus de flanoïdes et initie la nodisité.

Pour les mycorhizes les processus sont les mêmes sauf que la relation entre le champignon et son hôte est peu spécifique. La voie de signalisation des endosymbioses est donc commune pratiquement commune aux deux champignon et la bactérie.

Certains composés des exudats racinaires peuvent servir de substrat naturel à l’induction des gènes bactériens de catabolisme des polluants des sols. La l-carvone de Mentha spicata et d’autres terpénoïdes sont d’importants inducteurs du cométabolisme des PCB (biphénols polychlorés, polluant) chez Arthrobacter sp.

On observe un enrichissement en phénotypes ntd Aa (2-nitrotoluène réductase) en cas de pollution par des nitro-aromatiques et un enrichissement en phénotypes alk B (alkane monooxygénase) et ndo B (naphtalène dioxygénase) pour une pollution aux hydrocarbures. L’enrichissement en phénotype alk B se produit dans l’intérieur de la racine (bactéries endophytiques) tandis que l’enrichissement en ndo B se produit dans la motte. Scirpus pungens exposée au pétrole enrichit le sol en génotypes ndo B tandis que la plupart des plantes l’enrichissent en alk B. Les bactéries endophytiques augmentent la capacité des plantes à résister aux pathogènes, herbivores et autres plantes.

L'allélopathie explique en partie le caractèe invasive de certaines espèces. Les invasions biologiques sont considérées par l'UICN comme la seconde cause de dégradation des écosystèmes et de régression de la biodiversité. A titre d'exemple, l'Ailantahus altissima (Fraux-vernis du Japon) interagit en Amérique du Nord avec trois espèces autochtones (Acer rubrum, Acer saccharum, Quercus rubra). Acer rubrum montre une réponse positive à la présence de l'envahisseur alors que les jeunes Q. rubra ont une croissance inhibée en sa présence. Une espèce invasive peut donc fortement modifier le peuplement dans le quel est apparait, en inhibant le développement de certaines espèces, et en en favorisant d'autres. Acer rubrum s'est fortement développé aux USA au XXème siècle, peut-être en partie à cause de l’Ailanthus altissima.

L’identification des substances qui permettent de stimuler l’expression de gènes responsables de la biodégradation de polluants pourrait permettre le développement de nouvelles approches pour la bioremédiation des sols contaminés. Les plantes qui sécrètent des monoterpènes pourraient être utilisées in situ pour la dépollution par des systèmes plante/bactérie des sols contaminés au PCB.

Pour une agriculture durable et une réduction de la dépendance aux produits chimiques synthétiques, qui provoquent une certaine résistance, une augmentation du coût et une contamination de l’environnement, le potentiel allélopathique peut être utilisé et ce dans plusieurs voies, par exemple dans l’utilisation de composés allélopathiques comme herbicides ou pesticides naturels.

La gestion des mauvaises herbes peut se faire au moyen de plantes allélopathiques utilisées comme couverture végétale, en sous-semi ou comme culture intercalaire nettoyante. En effet, la décomposition des résidus des plantes allélopathiques peut inhiber la germination et la croissance des mauvaises herbes tout en stimulant la croissance des plantes cultivées. Cette décomposition peut également servir de pesticides, comme par exemple avec la décomposition de haricot velu (Mucura deeingiana) qui réduit le développement de nématodes phytopatogènes de racines de tomate de plus de 50 %.

Les pesticides naturels, ou pesticides dérivés de produits naturels, aident à l’amélioration de la production et à la conservation de l’environnement en étant la cible d’aucun organisme, efficaces dans le contrôle des organismes nuisibles, moins toxiques, et biodégradables en même temps. Ils peuvent aussi être plus sûrs que les pesticides synthétiques. En effet, l’utilisation répétée d’une seule molécule servant de pesticide synthétique peut conduire au développement de résistance de la part des populations cibles, contrairement aux pesticides naturels qui, dans les mécanismes de défense de la plante, souvent se composent d’une variété de toxines qui permettent ainsi une adaptation peu propice des organisme cibles.

Les plantes utilisées comme couverture présentent donc un faible pouvoir de compétition vis-à-vis des cultures, tout en permettant un contrôle de la flore adventice.

En haut



Herbicide

Un produit herbicide est défini comme une substance active ou une préparation ayant la propriété de tuer les végétaux.

« Phytocide » est un terme générique qui regroupe l'ensemble de ces produits.

En France, les pollutions de l'eau causées par les produits phytopharmaceutiques sont principalement dues aux herbicides de synthèse.

Il existe des plants OGM (soja) résistants au glyphosate, ce qui permet d'utiliser ce désherbant dans ces cultures.

Apparu en 1960, les dinitroanilines sont très peu solubles dans l'eau, ont une forte volatilité et sont souvent photodégradables : ce sont donc des produits a incorporer dans le sol, avant à la mise en place de la culture.

Ils agissent en stoppant la croissance des plantules peu après leur germination. Ils sont désignés sous le terme -impropre- "d'antigerminatif". Ce sont plus précisément des antimitotiques. Ils s'utilisent en pré-levée contre les graminées. Leur toxicité est faible et leur persistance varie selon la dose employée (quelques semaines à un an). Leur nom se termine par le vocable "line".

Ce sont exclusivement des herbicides. Leur absorption est essentiellement racinaire. Véhiculés par la sève brute, ils s'accumulent dans les feuilles où ils inhibent la photosynthèse. Ils ont une très faible solubilité dans l'eau et présentent une assez longue persistance d'action dans le sol (2 à 3 mois) mais variable selon les conditions écologiques rencontrées (sol, pluie, température). Ils ont une bonne action sur les graminées et sur certaines dicotylédones. Ils sont utilisés en pré ou post-levée. Leur toxicité est quasiment nulle. Leur nom se termine par le vocable "uron".

Exemples : chlortoluron, chloroxuron, cycluron, diuron, éthidimuron, fénuron, isoproturon, linuron, monolinuron, méthabenzthiazuron, métobromuron, métoxuron, monuron, thiazafluron, tebuthiuron, thiazafluron, siduron, néburon …

Ce groupe présente une structure cyclique. Ils agissent en bloquant la photosynthèse. Ils pénètrent par absorption radiculaire et sont véhiculés par la sève brute. Ils sont appliqués directement sur le sol. Le maïs est une plante très tolérante à ces composés, en particulier à l'atrazine. Le sorgho est également tolérant mais le blé et le soja y sont sensibles. Leur toxicité est faible et leur sélectivité souvent bonne. Leur solubilité dans l'eau est réduite et sont donc peu entrainés dans le sol. Leur persistance peut ainsi atteindre 6 à 12 mois pour certains.

Exemples : atrazine, cyanazine, méthoprotryne, propazine, terbuthylazine, simazine, simétryne, secbumeton, secbumeton, terbuméton, amétryne, desmétryne, prométryne,terbutryne…

Certains produits de cette famille sont des herbicides totaux, d'autres sont sélectifs. Étant absorbés par voies foliaire et racinaire, ils sont indépendants des conditions climatiques. Ils agissent en bloquant l'activité de l'enzyme AHAS indispensable à la synthèse de 3 acides aminés essentiels : la valine, la leucine et l'isoleucine. Ceci empêche la plante de croître et entraîne une sénescence prématurée. Ce mode d'action explique le peu de toxicité de ces substances à l'égard des animaux et de l'homme, vu que ces derniers ne peuvent synthétiser ces acides aminés, se les procurant à travers les végétaux. Utilisés sur céréales ou en désherbage total, ils sont très souples à l'emploi. Leur persistance est de plusieurs mois.

Exemples : imazaméthabenz, imazapyr…

Ils agissent sur la même enzyme que les imidazolinones.

Exemples : amidosulfuron, azimsulfuron, chlorsulfuron …

Le plus connu est le 2,4-D (acide dichloro 2,4 phénoxyacétique), très utilisé pour le désherbage sélectif des monocotylédones qui y sont peu sensibles, à la différence des dycotylédones. Le 2,4,5-T est utilisé comme débroussaillant.

Exemples :1) 2,4-D, 2,4-MCPA, , triclopyr, diclofop-méthyl, 2,4,5-T, 2) 2,4-DP (dichlorprop), MCPP (mécoprop), 2,3,6-TBA, dicamba, piclorame, clopyralid, flurénol...

Dérivé du benzène, ce groupe comprend des molécules toxiques pour les animaux (insecticide) et les végétaux. Ils sont de couleur jaune. Ils ont été très utilisés contre une large gamme de dicotylédones au stade plantule, pour la protection des céréales en traitement de post-levée. Ce sont des herbicides de contact à action rapide entraînant des nécroses sur les tissus qui se dessèchent et meurent. Ils agissent sur les membranes cellulaires qu'ils perméabilisent aux ions H+, abaissant fortement le pH des cellules. Ils ne se déplacent pas dans la plante, seules les parties touchées seront affectées par l'herbicide par l'apparition de brûlures au point d'impact.

Ils sont dangereux pour l'homme et l'environnement de par leur toxicité élevée. Le DNOC, à l'état sec, présente de plus des risques d'explosion. Les colorants nitrés sont actuellement remplacés par des produits plus sélectifs.

Conçus en 1945 pour la destruction des graminées, ces herbicides se subdivisent en 4 catégories : - 1) les dérivés de l'acide carbamique (NH2-COOH) qui agissent sur la division cellulaire. - 2) les dérivés de l'acide thiocarbamique (NH2-CO-SH) qui inhibent la synthèse des lipides à longue chaîne et des gibbéréllines. - 3) les dérivés de l'acide dithiocarbamique (NH2-CS-SH) qui empêchent la germination. - 4) les biscarbamates qui empêchent la photosynthèse.

Ces herbicides ont en commun leur faible toxicité et une volatilité plus ou moins grande. Ils perturbent la division cellulaire (antimitotique) et la physiologie générale de la plante, provoquant le phénomène d'anse en panier, dé aux feuilles ne pouvant pas se déplier.

Ils s'emploient le plus souvent en pré-levée (thiocarbamates)ou post-semis, parfois en post-levée (phenmediphame, barbame). A l'exception des composés allates, qui persistent plusieurs mois dans le sol, leur persistance est quasiment nulle.

Synthétisés dans les années 50, ils sont formés par l'association de 2 cycles pyridilyques. Ce sont des accepteurs d'électrons photosynthétiques, actifs sur les réactions lumineuses de la photosynthèse, provoquant l'arrêt de l'assimilation de CO2. Ils provoquent également la dégradation des acides gras insaturés, l'ensemble de ces actions débouchant sur la mort. Ils se caractérisent par leur rapidité d'action et leur absence de sélectivité (désherbant total), à l'exception du difenzoquat. Ils pénètrent dans les organes aériens mais migrent peu. Ce sont avant tout des produits de contact. Ils sont très solubles dans l'eau et n'ont pas d'effet par traitement de sol car ils sont fortement absorbés par les argiles où, de ce fait, ils ne se dégradent que très lentement. Ils sont très toxiques pour l'homme et les animaux du fait de l'absence d'antidote.

Exemples : diquat, paraquat, difenzoquat.

Ce sont des herbicides antigraminés qui inhibent l'ACCase dans les chloroplastes des monocotylédone. De nombreuses résistances sont apparues, pour quelques unes lié à des modifications de l'enzyme cible, mais, la plupart dues à d'autres mécanismes.

Exemples : Alloxydime-sodium, Clodinafop-propargyl.

Le gouvernement britannique et les industries de biotechnologie ont commandé une étude menée par des scientifiques indépendants pendant quatre ans sur la betterave et le colza transgéniques résistants à un herbicide. En novembre 2004, les conclusions de cette étude Bright prouve que ces OGM n'ont pas d'impact négatif sur l'environnement.

La guerre du Viet Nam a révélé les effets néfastes sur les populations vietnamiennes de "l'agent orange", défoliant formé d'un mélange de 2,4-D et de 2,4,5 T, utilisé au cours de ce conflit par l'armée américaine. . Le 2,4,5-T a montré sa longue rémanence et la haute toxicité d'une dioxine, la 2,3,7,8-tétrachlorodibenzo-p-dioxine *(TCDD) contenue à l'état de traces en mélange avec la matière active. Cette substance est un résidu de synthèse du 2,4,5-T, 100 fois plus toxique que la strychnine. Elle a un effet tératogène prononcé. On estime que 50 millions de litres d'agent orange, soit 20'000 t de matières actives renfermant 167 kg de dioxine ont été répandu dans la jungle et les rizières du Sud VietNam de 1962 à 1971. Il y a été enregistré de 1974 à 77 une nette augmentation des cancers du foie dans cette région. Ce produit est accusé d'engendrer une maladie congénitale, la phocomélie (du grec "corps de phoque") : des enfants vietnamiens naissent sans bras et sans jambes. Enfin, il entraine de graves lésions cutanées (chloracné). Le TCDD séjourne longtemps dans l'organisme (30 ans) où sa solubilité dans l'huile en favorise sa concentration et son stockage. Il séjourne longtemps dans le sol, car la dioxine est difficilement assimilé par les plantes. Le 2,4,5 T est interdit dans 15 pays dont les États-Unis et son usage est sévèrement restreint dans 7 autres.

L'usage d'engrais vert en évitant la prolifération des adventices permet de limiter l'utilisation d'herbicides.

En haut



Produit phytosanitaire

Un produit phytosanitaire est un produit utilisé pour soigner ou prévenir les maladies des organismes végétaux.

Il s'agit d'une substance active ou d'une association de plusieurs substances chimiques ou micro-organismes, d'un liant et éventuellement d'un solvant éventuellement accompagnés d'adjuvants ou d'un tensioactif.

Les phytosanitaires font partie de la famille des pesticides, elle même englobée dans la famille des biocides.

L'expression « produit phytosanitaire » est couramment employée dans un sens proche de produit phytopharmaceutique, défini par la règlementation communautaire, ou de produit antiparasitaire contre les ennemis des cultures défini par la règlementation française, ou encore de pesticide.

Les substances actives sont minérales (ex : sulfate de cuivre) ou organiques (ex : carbamates).

Elles sont d'origine naturelle (ex : Bt), ou issues de la chimie de synthèse (ex : glyphosate).

Dans ce cas il peut s'agir de la reproduction par l'industrie chimique de molécules naturellement biocides isolés dans la nature (Ex : les pyréthrines de synthèse, inspirées de molécules produites par des plantes de la famille des Chrysanthèmes et ayant des vertus acaricides, antiparasitaires, anthelminthiques et surtout insecticides).

Le produit phytosanitaire est destiné à protéger des espèces végétales cultivées (y compris des arbres), à en améliorer les rendements.

Il est homologué et autorisé pour un ou plusieurs usages, qui peuvent varier selon les époques ou les pays.

Il est aussi utilisé pour le contrôle d'organismes vivants non désirés sur des zones non cultivées (Dans ce cas le mot phytosanitaire ne semble pas toujours adéquat. On peut lui préférer le mot de pesticide).

Il peut enfin assurer une meilleure conservation des graines et des fruits.

Le terme phytosanitaire exclut les substances nutritives du type engrais ou oligoéléments sauf quand il s'agit de mélanges d'engrais et de produits phytosanitaires.

Il existe de part le monde près de 100'000 spécialités commerciales autorisées à la vente, composées à partir de 800 matières actives différentes. 15 à 20 nouvelles matières actives s'y rajoutent tous les ans.

Cette notion de solubilité est importante car c'est l'affinité d'un pesticide pour l'eau ou les corps gras qui va conditionner sa pénétration dans l'organisme cible.

La formulation d'un pesticide vise a présenter la matière active sous une forme permettant son application en lui ajoutant des substances destinées à améliorer et faciliter son action. Ce sont les adjuvants. Ils comprennent des tensio-actifs, des adhésifs, des émulsionnants, des stabilisants, des antitranspirants, des colorants, des matières répulsives, des hémétiques (vomitifs) et parfois des antidotes.

La formulation peut également améliorer l'efficacité biologique de la molécule active par des effets de synergie, des additifs qui retardent sa dégradation, prolongeant ainsi sa durée d'action. Inversement, des additifs peuvent avoir pour effet d'accélérer son élimination par les plantes à protéger ou dans le sol.

Il existe différents types de produits phytosanitaires, certains des produits chimiques de synthèse, d'autres sont naturels (microorganismes, macroorganismes, phéromones, substances naturelles). Les premiers sont généralement spécifiquement conçus pour tuer des organismes entrant en compétition avec les plantes cultivées ou nuisant à leur croissance ou à leur reproduction (mousses, champignons, bactéries, végétaux concurrents, insectes, rongeurs, acariens, mollusques, vers, nématodes, virus, etc.). Les seconds agissent généralement de manière différente: par compétition, par prédation, par mimétisme, par stimulation des défenses naturelles, ...

Les premiers sont généralement toxiques pour tout ou partie de l'environnement, avec un impact plus ou moins étendu et rémanent selon les cas. Les seconds sont généralement non dangereux pour l'environnement.

Les produits jugés les plus dangereux sont étiquetés comme tels.

Après avoir atteint 120 000 t puis 100 000 t, la France consommerait aujourd'hui environ 76 000 tonnes de produits phytosanitaires, ce qui la place au troisième rang des utilisateurs mondiaux derrière les États-Unis en quantité absolue. Une fois ramené à l'hectare cultivé (5kg/ha/an) hors surface en herbe, la France serait au quatrième rang européen (selon le rapport INRA Pesticides, agriculture et environnement, lui même basé sur les chiffres donnés par les fabricants, qui ne tiennent pas compte de l'utilisation de stocks éventuels des années précédentes).

Le produit phytosanitaire est généralement mis au point par les firmes agro-pharmaceutiques.

Dans la majorité des pays, sa mise en vente et son utilisation sont soumises à une autorisation préalable (l'homologation ou autorisation de mise sur le marché) de l'autorité nationale compétente (en France le Comité d'homologation des produits antiparasitaires, et en Belgique le Comité d'agréation).

Par exemple, une partie des tests concerne la toxicité aiguë (effet d'une absorption unique et massive) ou la toxicité chronique (effet d'une absorption régulière de petites doses), l'apparition de mutations, formation de tumeur (effet cancérogénique) malformation dans la descendance (effet teratogénique)...

Les effets sur l'environnement sont étudiés par l'analyse de leur influence sur les poissons, les oiseaux, les insectes, les microorganismes, mais aussi le processus de dégradation du produit dans l'air, l'eau et le sol.

Le produit est soit autorisé, soit reporté, soit refusé. Le produit autorisé l'est pour un ou plusieurs usages précis, définis par une plante cible (par exemple une culture de blé), un parasite cible (le puceron) et un type de traitement (des parties aériennes par exemple).

En dépit du processus long et complexe des homologations, certains produits antérieurement autorisés sont interdits en raison de leur dangerosité démontrée ultérieurement (pollution rémanente des eaux, apparition de résistance de souches, influence métabolique à long terme...).

En France, depuis plusieurs années, de nombreux produits phytosanitaires jusqu'alors autorisés (donc considérés comme efficaces et ne présentant pas de risque inacceptable) ont été interdits à la mise sur le marché et à l'utilisation. Ces produits sont appelés « Produits Phytosanitaires Non Utilisables » (PPNU).

L'utilisation de produits phytosanitaires retirés du marché est interdite et soumise à contrôle. L'article L.253-17 du Code rural prévoit des peines qui peuvent aller jusqu'à 30 000 euros d'amende et six mois d'emprisonnement.

Un exemple typique de changement de classification est celui de l'atrazine, utilisé massivement en France et dans de nombreux autres pays comme un herbicide d'une grande efficacité pour le désherbage du maïs. L'atrazine (comme toute la famille des triazines) est à présent reconnue comme à l'origine de pollutions majeures des nappes souterraines et des eaux de surface qui sont polluées à 50 % en France (par rapport aux normes édictées pour les triazines). Par exemple, en Bretagne, comme dans le Sud-Ouest et l'Île-de-France, il est courant de trouver, dans des prélèvements d'eau potable, des taux de triazine dix fois plus élevés que le seuil autorisé de 0,1 microgramme par litre. Jusqu'en 2002, la famille des triazines constituait les produits phytosanitaires les plus employé s en France, utilisés à 80 % en termes de surface par les producteurs de maïs conventionnel. Ils avaient été introduits en 1962 et étaient caractérisés par une excellente efficacité et un faible coût. Protégé des UV solaires dans le sol, ils se sont avérés moins dégradables que ce qu'avait annoncé le fabricant. 9 ans après son interdiction en Allemagne, l'atrazine était encore le pesticide quantitativement le plus présent dans la pluie, et ses produits de dégradation (ex : désisopropyl--atrazine, déséthyl-atrazine) sont encore très présentes alors que la molécule-mère commence à disparaître .

En raison de sa toxicité et de sa pollution rémanente dans les eaux (molécule peu biodégradable), l'atrazine a été bannie en Allemagne puis après quelques années en France en 2001, comme le reste de la famille des triazines (mise en application en juin 2003 pour la France) après des années d'utilisation (1962-2003).

Ce revirement pourrait être lié à une prise de conscience progressive de la dangerosité de certains produits phytosanitaires, ou éventuellement aux deux condamnations de la France par la cour de Justice européenne pour avoir manqué à ses obligations en matière de qualité de l'eau. De nombreux autres produits sont en discussion, tel l'arsénite de soude (produit cancérigène très utilisé en viticulture). Le programme européen global de réforme écologique de l'agriculture prévoit d'interdire d'ici 2008 près de 400 produits jugés dangereux pour la santé de l'homme qui avaient été cependant agréés par la directive de 1991. L'arsénite de soude est dorénavant inutilisable en viticulture. Tous les résidus (bidons vides ou partiellement vides)ont été récupérés lors de collectes spécifiques organisées par les autorités compétentes. Des contrôles du Service Régional de la Protection des Végétaux (SRPV) peuvent être réalisés dans toutes les exploitations agricoles et des sanctions sont prévues en cas de détention de produits phytosanitaires interdits (=PPNU:Produits Phytosanitaires Non-Utilisables).

Un exemple de cas très débattu au début du XXIe siècle est celui du Gaucho, accusé par les apiculteurs d'être à l'origine de la diminution importante de certaines populations d'insectes (abeille). Voir l'article sur le Gaucho pour plus d'information.

Bien qu'interdit depuis longtemps dans les pays occidentaux, on en trouve encore des traces dans les graisses des animaux, mais aussi dans notre nourriture. L'OMS cependant estime que le DDT est irremplaçable dans la lutte contre les moustiques vecteurs du paludisme et continue à préconiser son utilisation, uniquement à l'intérieur des habitations. .

Les produits apparaissant sur le marché au début du XXI siècle sont réputés moins persistants que leurs prédécesseurs, mais ils sont souvent bien plus actifs à des doses parfois bien plus faibles (0,6 mg de matière active/m² pour une sulfonylurée utilisée pour le désherbage du blé). Il en va de même pour de nombreux biocides.

En Europe, la qualité des eaux destinées à la consommation humaine autorise une concentration maximale de produits phytosanitaires (insecticides, fongicides, herbicides) de 0,1 microgramme/l par substance ou de 0,5 microgramme/l pour toutes substances (directive européenne 80/778/CEE, décret du 3 janvier 1989).

Dans le cas d’une mutation de cible, une anomalie naturelle a modifiée le code génétique de l’enzyme cible de l’herbicide. Ce dernier n’agit donc plus sur la plante. Tous les herbicides qui ont le même mode d’action sont alors concernés et conduit des plantes à subir des doses extrêmes. Pour ce type de résistance, le taux de résistance est très élevé (exprimé par le rapport R/S) et peut atteindre 1000. C’est-à-dire que la dose d’un herbicide qui détruit une plante résistante est 1000 fois supérieure à la dose qui détruit une plante sensible.

Dans ce type de mécanisme, la matière active peut agir sur sa cible (une enzyme) mais elle y accède difficilement soit elle est très mal transportée vers la cible (cellule moins perméable), soit dégradée par des enzymes de la plante. Cette dernière est encore sensible à l’herbicide mais à des doses très élevées par rapport à la normale, pouvant aller de cinq à cent fois la dose habituelle, avec des doses classiques, l’adventice peut être ralentie.

Actuellement il existe des mécanismes encore inconnus à ce jour, mais sont encore très marginal. Certaines plantes se sont révélées résistantes sans que l’on puisse expliquer par quel mécanisme elles sont résistantes, par ailleurs il a été prouvé que certaine plante présente plusieurs mécanismes de résistance sur un même individu.

En haut



Source : Wikipedia