Astronomie

3.4346405229216 (1224)
Posté par hal 01/05/2009 @ 12:14

Tags : astronomie, univers, science

Dernières actualités
De nouvelles céphéides pour mesurer l'Univers - Futura Sciences
Sous la direction de Krzysztof Stanek, professeur d'astronomie à l'Université de l'Ohio, Jonathan bird, un thésard en astronomie, s'est intéressé à une classe de céphéides peu étudiée, celle à ultra-longues périodes (ULP)....
Le nez dans le ciel - Sud Ouest
Les premières journées culturelles de Pomerol, organisées par l'équipe de la Commission culture et communication, vont se décliner sur le thème de l'astronomie en lien direct avec l'année mondiale de l'astronomie instaurée par l'Unesco....
[INFORMATION GENERALE-ASTRONOMIE] - France Info
2e tour d'admissions pour les élèves de terminale non préinscrits dans les délais et ceux qui n'ont pas eu leurs voeux exaucés (et 14/7). Colloque national à Paris dans le cadre des Etats généraux de la bioéthique (Egbe) (9h30 - Maison de la Chimie)....
Aujourd'hui : les femmes, le thriller et les bateaux - Le Télégramme
Au Café littéraire: «C'est l'année de l'astronomie», les génies de l'astronomie - Pythagore, Kepler et Henriette Chardak. Au Café littéraire: «C'est l'année de l'astronomie», conférence d'Alain Deroussiram. À l'Espace rencontres des Ecrivains de la...
LÈGE-CAP-FERRET. L'astronomie s'ouvre aux enfants - Sud Ouest
Henry Martin, secrétaire de l'association d'astronomie Betelgeuse de Lège-Cap-Ferret, est allé à l'école du Phare, au Cap-Ferret, la semaine passée pour faire découvrir aux enfants des classes de CE 1 et CE 2, puis de CM 1 et CM 2,...
Un programme plein de pépites - Sud Ouest
En parallèle, de 14 heures à 18 heures, exposition « Reflets du ciel : rêves et raisons », présentation de textes des ateliers d'écriture, livres et BD autour de l'astronomie, exposition de dessins d'enfants. Enfin, pour clôturer ces journées,...
Année mondiale de l'astronomie : Des étoiles plein les yeux - Sciences.gouv.fr
À l'occasion de l'Année Mondiale de l'Astronomie (AMA09) , le CNRS et le CNES produisent une collection de podcasts vidéo : "Des étoiles plein les yeux", à regarder en baladodiffusion. Composée d'une vingtaine de films courts, cette collection permet...
À SUIVRE CETTE SEMAINE - Nord Eclair.fr
Il nous promet la Lune C'est un événement, et le forum départemental des Sciences n'allait sûrement pas passer à côté : pour célébrer l'année mondiale de l'Astronomie, il nous promet la Lune et la découverte de toutes les merveilles du ciel....
Astronomie : remise de prix à cinquante collégiens - La Voix du Nord
Mercredi, à la Coupole à Helfaut, cinquante collégiens de cinquième ont reçu un prix, après avoir participé à un concours organisé par l'académie sur le thème de l'astronomie. Un seul Audomarois était parmi eux. En partenariat avec les centres de...
Plein feu sur les étoiles - Sud Ouest
Les enfants de CM1 et CM2 ont étudié, cette année, l'astronomie. Ils sont allés en classe verte dans les Pyrénées avec la certitude qu'ils pourraient voir les étoiles, mais en raison du mauvais temps, ils n'ont pu le faire », explique Jean-Louis...

Astronomie

Sur tous les continents et depuis la haute antiquité, l'observation du ciel a une grande importance (Codex Duran).

L’astronomie est la science de l’observation des astres, cherchant à expliquer leur origine, leur évolution, leurs propriétés physiques et chimiques. Elle ne doit pas être confondue avec la mécanique céleste qui n’en est qu’un domaine particulier. Avec plus de 6 000 ans d’Histoire, les origines de l’astronomie remontant au-delà de l’antiquité, dans les pratiques religieuses préhistoriques.

Astronomie vient du grec αστρονομία (άστρον et νόμος) ce qui signifie loi des astres.

L’astronomie est l’une des rares sciences où les amateurs peuvent encore jouer un rôle actif. Elle est en effet pratiquée à titre de loisir auprès d’un large public d’astronomes amateurs : une partie des plus expérimentés d’entre eux participent à la découverte d’astéroïdes et de comètes. C’est à ce sujet un loisir particulièrement populaire en France, comme en témoigne la Nuit des étoiles.

En 2009, aura lieu pour la première fois l'Année Mondiale de l'Astronomie.

L'astronomie est considérée comme la plus ancienne des sciences. L'archéologie révèle en effet que certaines civilisations disparues de l'âge du bronze, et peut-être du néolithique, avaient déjà des connaissances en astronomie. Elles avaient compris le caractère périodique des équinoxes et sans doute leur relation avec le cycle des saisons, elles savaient également reconnaître certaines constellations. L'astronomie moderne doit son développement à celui des mathématiques depuis l'antiquité grecque et à l'invention d'instruments d'observation à la fin du Moyen Âge. Si l'astronomie s'est pratiquée pendant plusieurs siècles parallèlement à l'astrologie, le siècle des lumières et la redécouverte de la pensée grecque a vu naître la distinction entre la raison et la foi, si bien que l'astrologie n'est plus pratiquée par les astronomes.

En Mésopotamie, l'astronomie voit apparaître ses premiers fondements mathématiques. Le repérage des trajets des astres errants se fait d'abord sur 3 voies parallèles à l'équateur. Puis, après les premières observations systématiques de la fin du 2ème millénaire (~ -1200), les trajets du Soleil et de la Lune sont mieux connus. Vers le 8ème siècle av. JC apparaît la notion d'écliptique et plus tard encore une première forme de zodiaque à 12 parties égales (dans le temps, pas encore dans l'espace). Vers le milieu du 1er millénaire on voit ainsi cohabiter un repérage en 12 signes très pratiques pour les calculs de position des astres, et un repérage en constellations utilisé pour les interprétations de la divination astrale. On détermine seulement vers ce moment-là les périodes des cycles des planètes, apparaît aussi le découpage en 360° de l'écliptique. L'astronomie mésopotamienne est différenciée en général de l'astronomie grecque par son caractère arithmétique : contrairement à l'astronomie grecque, l'astronomie mésopotamienne est empirique. On ne cherche pas les causes des mouvements, on ne crée donc pas de modèles pour en rendre compte, les phénomènes ne sont pas perçus comme des apparences résultant d'un cosmos représentable géométriquement.

À cette époque, l'astronomie ne peut être étudiée sans l'apport d'autres sciences qui lui sont complémentaires et nécessaires : les mathématiques (géométrie, trigonométrie), ainsi que la philosophie. Elle sert au calcul du temps.

Il faut signaler le rôle de Boèce comme fondateur dès le VIe siècle du quadrivium, qui inclut l'arithmétique, la géométrie, la musique et l'astronomie.

Après les invasions barbares, l'astronomie se développe relativement peu en occident.

À la fin du Xe siècle, un grand observatoire est construit près de Téhéran par l'astronome al-Khujandi.

La philosophie (Platon et Aristote) fait partie intégrante, avec l'ensemble des autres sciences (médecine, géographie, mécanique, etc.). De ce grand mouvement de renaissance appelé âge d'or de la civilisation arabo-musulmane.

Saint Bède le Vénérable au VIIIe siècle développa en occident les arts libéraux (trivium et quadrivium). Il établit les règles du comput pour le calcul des fêtes mobiles, et pour le calcul du temps, qui nécessitaient des éléments d'astronomie.

D'autres éléments furent introduits en occident par l'intermédiaire de Gerbert d'Aurillac (Sylvestre II) un peu avant l'an mille, avec la philosophie d'Aristote. Il est difficile de savoir exactement quels astronomes musulmans étaient connus de Gerbert d'Aurillac. Gerbert est important pour la compréhension du développement historique de l'ensemble du savoir occidental, qui incluait la philosophie.

L'œuvre d'Al-Farghani est traduite en latin au XIIe siècle, en même temps que bien d'autres traités arabes et que la philosophie d'Aristote.

On peut encore citer Al-Maghribi, Al-Sufi.

Pendant la Renaissance, Copernic propose un modèle héliocentrique du système solaire. Cette idée est défendue, étendue et corrigée par Galilée et Kepler. Galilée imagine la lunette astronomique pour améliorer ses observations. S'appuyant sur des relevés d'observation très précis faits par le grand astronome Tycho Brahe, Kepler est le premier à imaginer un système de lois régissant les détails du mouvement des planètes autour du Soleil, mais n'est pas capable de formuler une théorie allant au-delà de la simple description présentée dans ses lois.

C'est Isaac Newton qui, en décrivant la gravitation par ses lois du mouvement, la rend universelle et permet finalement de donner une explication rationnelle au mouvement des planètes. Il invente aussi le télescope réflecteur, qui améliore les observations.

On découvre que les étoiles sont des objets très lointains : l'étoile la plus proche du système solaire, Proxima du Centaure, est à plus de quatre années-lumière.

Avec l'introduction de la spectroscopie, on montre qu'elles sont similaires à notre soleil, mais dans une grande gamme de température, de masse et de taille. L'existence de notre Galaxie, en tant qu'ensemble distinct d'étoiles, n'est prouvée qu'au début du XXe siècle du fait de l'existence d'autres galaxies.

Peu après, on découvre l'expansion de l'univers, conséquence de la loi de Hubble, établissant une relation entre la vitesse d'éloignement des autres galaxies par rapport au système solaire et leur distance.

La cosmologie fait de grands progrès durant le XXe siècle, notamment avec la théorie du Big-bang, largement supportée par l'astronomie et la physique, comme le rayonnement thermique cosmologique (ou rayonnement fossile), et les différentes théories de nucléosynthèse expliquant l'abondance des éléments chimiques et de leurs isotopes.

Dans les dernières décennies du XXe siècle, l'apparition des radiotélescopes, de la radioastronomie, et des moyens de traitement informatique, autorise de nouveaux types d'expérimentations sur les corps célestes éloignés, par analyse spectroscopique des raies d'émission émises par les atomes et leurs différents isotopes lors des sauts quantiques, et transmis à travers l'espace par les ondes électromagnétiques.

À son début, durant l'antiquité, l'astronomie consiste principalement en l'astrométrie, c'est-à-dire la mesure de la position dans le ciel des étoiles et des planètes. Plus tard, des travaux de Kepler et de Newton naît la mécanique céleste qui permet la prévision mathématique des mouvements des corps célestes sous l'action de la gravitation, en particulier les objets du système solaire. La plus grande partie du travail dans ces deux disciplines (l'astrométrie et la mécanique céleste), auparavant effectué à la main, est maintenant fortement automatisée grâce aux ordinateurs et aux capteurs CCD, au point que maintenant elles sont rarement considérées comme des disciplines distinctes. Dorénavant, le mouvement et la position des objets peuvent être rapidement connus, si bien que l'astronomie moderne est beaucoup plus concernée par l'observation et la compréhension de la nature physique des objets célestes.

Depuis le XXe siècle, l'astronomie professionnelle a tendance à se séparer en deux disciplines : astronomie d'observation et astrophysique théorique. Bien que la plupart des astronomes utilisent les deux dans leurs recherches, du fait des différents talents nécessaires, les astronomes professionnels tendent à se spécialiser dans l'un ou l'autre de ces domaines. L'astronomie d'observation est concernée principalement par l'acquisition de données, ce qui inclut la construction et la maintenance des instruments et le traitement des résultats. L'astrophysique théorique est principalement concernée par la recherche des implications observationnelles de différents modèles, c'est-à-dire qu'elle cherche à comprendre et à prédire les phénomènes observés.

L'astrophysique est la branche de l'astronomie qui détermine les phénomènes physiques déduits par l'observation des astres. Actuellement, les astronomes ont tous une formation poussée en astrophysique et leurs observations sont presque toujours étudiées dans un contexte astrophysique. En revanche il existe un certain nombre de chercheurs et chercheuses qui étudient exclusivement l'astrophysique. Le travail des astrophysiciens est d'analyser des données d'observations astronomiques et d'en déduire des phénomènes physiques.

L'étoile la plus étudiée est le soleil, une petite étoile typique de la séquence principale de type spectral G2 V et vieille d'environ 4,6 milliards d'années. Le soleil n'est pas considéré comme une étoile variable, mais il subi des changements périodiques de son activité, ce qui peut être vu grâce aux taches solaires. Ce cycle de fluctuation du nombre de taches dure 11 ans. Les taches solaires sont des régions plus froides que la normale qui sont associées à une activité magnétique intense.

La luminosité du soleil a régulièrement augmenté au cours de sa vie. Aujourd'hui, il est en effet 40% plus brillant qu'au moment ou il est devenu une étoile de la séquence principale. Le soleil a également subi des changements périodiques de luminosité ayant eu un impact significatif sur la Terre. Par exemple, on soupçonne le minimum de Maunder d'être la cause du petit âge glaciaire survenu durant le Moyen Âge.

Au centre du soleil se trouve le cœur . Un zone ou la température et la pression sont suffisant pour permettre la fusion nucléaire. Au dessus du noyau se trouve la zone de radiations, ou le plasma transporte les flux d'énergie au moyen de radiations. La couche recouvrant la zone de radiations forme la zone de convection où l'énergie est conduite vers la photosphère grâce à la convection, autrement dit, les déplacements physiques du gaz. On croit que cette zone de convection est à l'origine de l'activité magnétique qui génère les taches.

La surface extérieure du soleil est appelée la photosphère. Juste au dessus de cette couche se trouve une mince région appelée la chromosphère. Ensuite, nous avons la couronne solaire.

Le vent solaire, un flux de plasma constitué essentiellement de particules chargée, « souffle » constamment à partir du soleil jusqu'à l'héliopause. Le vent solaire interagit avec la magnétosphère terrestre de la Terre pour créer les ceintures de Van Allen. Les aurores polaires sont également une conséquence de ce vent solaire.

Ce domaine de l'astronomie s'intéresse à l'ensemble des planètes, des lunes, des planètes naines, des comètes, des astéroïdes, et des autres corps orbitant autour du soleil ; ainsi qu'aux exoplanètes. Le système solaire a été relativement bien étudié, d'abord à l'aide de télescopes puis aux moyens de sondes. Cela a fourni une bonne compréhension globale de la formation et de l'évolution de ce système planétaire, bien qu'un grand nombre de découvertes soient encore à accomplir.

Le système solaire est subdivisé en cinq parties : le soleil, les planètes internes, la ceinture d'astéroïdes, les planètes externes et le nuage d'Oort. Les planètes internes sont toutes telluriques, il s'agit de Mercure, Vénus, la Terre , et Mars. Les planètes externes, des géantes gazeuses, sont Jupiter, Saturne, Uranus et Neptune. Derrière Neptune se trouve la ceinture de Kuiper, et finalement, le nuage de Oort, qui s'étend probablement sur une année-lumière.

Les planètes ont été formées par un disque protoplanétaire qui entourait le soleil lorsqu'il venait de se former. Grâce à un processus combinant attraction gravitationnelle, collision, et accrétion, le disque forma des amalgames de matières qui allaient devenir, avec le temps, des protoplanètes. A ce moment là, la pression de radiation du vent solaire a expulsé la majorité de la matière qui ne s'était pas assemblée, et seules les planètes munies d'une masse suffisante purent retenir leur atmosphère gazeuse. Les planètes ont continué d'éjecter la matière restante durant une période d'intense bombardement météoritique, comme en témoigne les nombreux cratères trouvés, entre autres, sur la Lune. Durant cette période, quelques protoplanètes ont pu entrer en collision, et selon l'hypothèse majeure, c'est ainsi que la Lune fut formée.

Une fois qu'une planète atteint une masse suffisante, les matériaux de différentes densités commencent à se séparer entre eux, c'est la différenciation planétaire. Ce processus peut former un noyau rocheux ou métallique, entouré par un manteau et une croûte. Le cœur peut inclure des régions solides et liquides, et dans certains cas, il peut générer son propre champ magnétique, qui protège la planète et son atmosphère des attaques du vent solaire.

L'étude des étoiles et de l'évolution stellaire est fondamentale pour notre compréhension de l'univers. L'astrophysique des étoiles a été déterminée grâce à l'observation et à la compréhension théorique ainsi que par des simulations informatiques.

Une étoile se forme dans des régions denses de poussières et de gaz, connues sous le nom de nuages moléculaires géants. Lorsqu'ils sont déstabilisés, les fragments peuvent s'effondrer sous l'influence de la gravité pour former une protoétoile. Une région suffisamment dense et chaude provoquera une fusion nucléaire, créant ainsi une étoile de la séquence principale.

Presque tous les éléments plus lourds que l'hydrogène et l'hélium ont été créés dans le noyau des étoiles.

Les caractéristiques de l'étoile résultant dépendent d'abord de sa masse de départ. Plus l'étoile est massive, plus sa luminosité est importante et plus elle videra le stock d'hydrogène présent dans son noyau rapidement. Au fil du temps, cette réserve est entièrement convertie en hélium, et l'étoile commence alors à évoluer. La fusion de l'hélium requiert une plus grande température dans le noyau, de cette façon, l'étoile s'agrandit et son noyau se densifie en même temps. Devenue une géante rouge, notre étoile consume alors son hélium. Cette phase est relativement courte. Les étoiles très massive peuvent aussi subir une série de phases rétrécissantes, où la fusion se poursuit en élément de plus en plus lourds.

Le destin final de l'étoile dépend de sa masse: les étoiles qui sont plus de 8 fois plus massives que le soleil peuvent s'effondrer en supernova ; alors que les étoiles plus légères forment des nébuleuses planétaires et évoluent en naines blanches. Ce qui reste d'une très grosse étoile est une étoile à neutrons, ou dans certains cas un trou noir. Les étoiles binaires proches peuvent suivre des chemins plus complexes dans leur évolution, comme un transfert de masses sur le compagnon d'une naines blanche pouvant causer une supernova. Les nébuleuses planétaires et les supernova sont nécessaires à la distribution de métaux dans le milieu interstellaire ; sans cela, toutes les nouvelles étoiles (leur système planétaire y compris) seraient uniquement formées à partir d'hydrogène et d'hélium.

Le système solaire orbite au sein de la Voie lactée, une galaxie spirale barrée qui est un membre important du Groupe local. C'est une masse tournante formée de gaz, d'étoiles et d'autres objets maintenus ensemble par une attraction gravitationnelle mutuelle. Étant donné que la Terre est située dans un bras extérieur poussiéreux, il y a une grande partie de la Voie lactée que l'on ne peut pas voir.

Au centre de la Voie lactée se trouve le noyau, un bulbe de forme étirée qui semble abriter un trou noir supermassif en son centre. Celui-ci est entouré de quatre bras spiraux majeur démarrant du noyau. C'est une région active de la galaxie qui contient beaucoup d'étoiles jeunes appartenant à la population II. Le disque est entouré par un halo sphéroïdal d'étoiles plus vieilles de population I, ainsi que par une concentration relativement dense d'amas globulaires,.

Entre les étoiles se trouve le milieu interstellaire, une région de matière éparpillée. Dans les régions les plus denses, des nuages moléculaires formé principalement d'hydrogène moléculaire contribuent à la formation de nouvelles étoiles. Cela commence avec des nébuleuses sombres qui se densifient puis s'effondrent (en un volume déterminé par la longueur de Jeans) pour former des protoétoiles compactes.

Quand des étoiles plus massives apparaissent, elles transforment le nuage en une région HII de gaz et de plasma luminescent. Le vent stellaire et les explosions de supernova servent finalement à disperser le nuage, laissant souvent derrière lui un ou plusieurs amas ouverts. Ces amas se dispersent graduellement et les étoiles rejoignent la population de la Voie lactée.

Les études cinématiques de la matière présente dans la Voie lactée ont démontré qu'il y a plus de masse qu'il n'y parait. Un halo de matière noire semble dominer la masse, bien que la nature de cette matière noire reste indéterminée.

L'étude des objets situés en dehors de notre galaxie est une branche de l'astronomie concernée par la formation et l'évolution des galaxies ; leur morphologie et classification ; l'examen des galaxies actives ; ainsi que par les groupes et amas de galaxies. Ces derniers sont importants pour la compréhension des structures à grande échelle de l'univers.

La plupart des galaxies sont organisées en formes distinctes, ce qui permet d'établir un schéma de classification. Elles sont communément divisées en galaxies spirales, elliptiques et irrégulières.

Comme son nom l'indique, une galaxie elliptique à la forme d'une ellipse. Ses étoiles se déplacent sur une orbite choisie au hasard sans aucune direction préférée. Ces galaxies ne contiennent que peu ou pas de gaz interstellaire, peu de régions de formation d'étoiles, et généralement des étoiles âgées. On trouve généralement des étoiles dans les noyaux d'amas galactiques et peuvent se former à partir de la fusion de plus grandes galaxies.

Une galaxie spirale est organisée comme un disque plat en rotation, avec généralement un bulbe proéminent ou une barre en son centre, ainsi que des bras spiraux qui s'étendent vers l'extérieur. Ces bras sont des régions poussiéreuses de formations d'étoiles où les jeunes étoiles massives produisent une teinte bleue. Les galaxies spirales sont typiquement entourée d'un halo d'étoiles plus vieilles. La Voie lactée et la galaxie d'Andromède sont des galaxies spirales.

Les galaxies irrégulières sont chaotiques en apparence et ne sont ni spirales, ni elliptiques. Environ un quart des galaxies sont irrégulières. La forme si particulière peut être le résultat d'une interaction gravitationnelle.

Une galaxie active est une structure dont une partie significative de l'énergie qu'elle émet ne provient pas de ses étoiles, de son gaz ou de sa poussière. Ce type de galaxie est alimenté par une région compacte en son noyau, généralement grâce à un trou noir supermassif, pense-t-on, qui émettrait des radiations grâce aux matériaux qu'il avale.

Une radiogalaxie est une galaxie active qui est vraiment très lumineuse dans le domaine radio du spectre électromagnétique et qui produit de gigantesques lobes de gaz. Les galaxies actives émettant des radiations très énergétiques incluent les galaxies de Seyfert, les quasars et les blazars. Les quasars semblent être les objets les plus lumineux de l'univers connu.

Les grandes structures du cosmos sont représentées par des groupes et des amas de galaxies. Cette structure est organisée de manière hiérarchique, dont les plus grandes connues à ce jour sont les superamas. Le tout est agencé en filaments et en murs, laissant d'immenses régions vides entre eux.

La cosmologie (du grec κοσμος, « monde, univers » et λογος, « mot, étude ») pourrait être considérée comme l'étude de l'univers comme étant un tout.

Les observations de la structure de l'univers à grande échelle, une branche appelée cosmologie physique, a donné une profonde connaissance de la formation et de l'évolution du cosmos. La théorie bien acceptée du Big bang est fondamentale à la cosmologie moderne qui dit que l'univers a commencé comme un simple point et qu'il s'est ensuite agrandi durant 13,7 milliards d'année jusqu'à son état actuel. Le concept du Big bang peut être retracé jusqu'à la découverte du fond diffus cosmologique en 1965.

Dans ce processus d'expansion, l'univers a connu plusieurs stades d'évolution. Dans les tous premiers temps, nos théories actuelles montrent une inflation cosmique extrêmement rapide, ce qui a homogénéisé les conditions de départ. Ensuite, la nucléosynthèse primordiale a produit les éléments de base de l'univers nouveau-né.

Lorsque les premiers atomes furent formés, l'espace devint transparent aux radiations, libérant ainsi de l'énergie, perçue aujourd'hui à travers le fond diffus cosmologique. L'expansion de l'univers connu alors un Age Sombre dû au manque de sources d'énergie stellaires.

Une structure hiérarchique de la matière commença à se former à partir de variations minuscules de la densité de matière. La matière s'accumula alors dans les régions les plus denses, formant des nuages de gaz interstellaire et les toutes premières étoiles. Ces étoiles massives déclenchèrent alors le processus du réionisation et semblent être à l'origine de la création de beaucoup d'éléments lourds du jeune univers.

L'attraction gravitationnelle a regroupé la matière en filaments, laissant ainsi d'immenses régions vides dans les lacunes. Graduellement, des organisation de gaz et de poussière ont émergé pour former les premières galaxies primitives. Au fil du temps, celles-ci ont attiré plus de matière, et se sont souvent organisées en amas de galaxies, puis en superamas.

L'existence de la matière noire et de l'énergie sombre est fondamentale à la structure de l'univers. On pense maintenant qu'elles sont les composantes dominantes, formant 96 % de la densité de l'univers. Pour cette raison, beaucoup d'efforts sont déployés dans le but de découvrir la composition et la physique régissant ces éléments.

En astronomie, l'information provient principalement de la détection et de l'analyse de la lumière visible ou d'une autre onde électromagnétique. L'astronomie d'observation peut être divisée selon les régions observées du spectre électromagnétique. Certaines parties du spectre peuvent être observées depuis la surface de la Terre, alors que d'autres sont seulement observables à de hautes altitudes voir dans l'espace. Des informations spécifiques sur ces sous-branches sont données ci-dessous.

La radioastronomie étudie les radiations d'une longueur d'onde supérieure au millimètre. La radioastronomie est différente des autres formes d'observations astronomique dans la mesure où les ondes radio sont traitées d'avantages comme des ondes plutôt que comme des photons discrets. Il est plus facile de mesure l'amplitude et la phase des ondes radio que celles de longueurs d'ondes plus courtes.

Bien que certaines ondes radio soient produites par certains objets astronomiques sous forme d'émissions thermiques, la plupart des émissions radio que sont observées depuis la Terre sont vues sous forme de rayonnement synchrotron, qui est produit lorsque les électrons oscillent autour de champs magnétiques. En outre, un certain nombre de raies spectrales produit par le gaz interstellaire, notamment le raie d'hydrogène à 21 cm, sont observable dans le domaine radio,.

Un grande variété d'objets sont observables en ondes radio, ce qui inclut les supernovae, le gaz interstellaire, les pulsars et les noyaux galactiques actifs,.

L'astronomie infrarouge s'occupe de la détection et de l'analyse du rayonnement infrarouge (longueurs d'onde plus longue de celle de la lumière rouge) . Excepté pour les longueurs d'ondes situées près de la lumière visible, le rayonnement infrarouge est fortement absorbé par l'atmosphère ; d'autre-part, celle-ci produit des émissions d'infrarouge significatives. Par conséquent, les observatoires infrarouges doivent être situés sur des lieux très élevés et sec, ou dans l'espace.

L'astronomie infrarouge est particulièrement utile pour l'observation des régions galactique entourées de poussière, et pour les études des gaz moléculaires. Étant sollicitée dans le cadre de l'observation d'objets froids (moins de quelques centaines de Kelvins) et est donc également utile à l'observation des atmosphères planétaires.

Parmi les observatoires à infrarouges, on peut citer les télescopes spatiaux Spitzer et Herschel.

D'un point de vue historique, l'astronomie optique, également appelée l'astronomie de la lumière visible, est la plus ancienne forme d'astronomie. À l'origine, les images optiques étaient dessinées à la main. À la fin du XIXe siècle et durant une bonne partie du XXe siècle, les images furent faites en utilisant un équipement photographique. Les images modernes sont produites grâce à des détecteurs digitaux, particulièrement les caméras CCD. Bien que la lumière visible s'étend elle-même approximativement 4000 Å à 7000 Å (400 nm à 700 nm), le même équipement peut être utilisé pour observer les ultraviolets proches ainsi que le proche-infrarouge.

En réalité, l'atmosphère n'est pas tout à fait transparente à la lumière visible. En effet, les images obtenues sur Terre dans ces longueurs d'ondes souffrent de distortion dues aux turbulences atmosphériques. C'est ce phénomène qui est responsable du scintillement des étoiles. Le pouvoir de résolution ainsi que la magnitude limite théoriques d'un télescope terrestre sont donc diminués à cause de ces mêmes perturbations. Pour remédier à ce problème, il est donc nécessaire de quitter l'atmosphère terrestre. Une autre solution, l'optique adaptative, permet également de réduire la perte de qualité de l'image.

L'astronomie en ultraviolets fait référence aux observations aux longueurs d'ondes correspondant à l'ultraviolet, c'est-à-dire entre ~ 100 et 3200 Å (10 à 320 nm). La lumière de ces longueurs est absorbée par l'atmosphère de la terre, les observations de ces longueurs d'ondes se font donc depuis la haute atmosphère ou depuis l'espace. L'astronomie à ultraviolets est plus indiquée pour l'observation du rayonnement thermique et des raies spectrales des étoiles bleues chaudes (étoiles OB) qui sont très lumineuses dans ce domaine. Cela comprend les étoiles bleues des autres galaxies, qui ont été les cibles de plusieurs études sur le sujet. D'autre objets sont aussi couramment observés en UV, comme les nébuleuses planétaires, les rémanents de supernovae ou les noyaux galactiques actifs. Cependant, la lumière ultraviolette est facilement absorbée par la poussière interstellaire, les mesures ont donc besoin d'être corrigée de l'extinction.

L'astronomie des rayons X consiste en l'étude des objets astronomiques à des longueurs d'ondes correspondant aux rayons X, autrement dit allant d'environ 0,1 à 100 Å (0,01 à 100 nm). Typiquement, les objets émettent des rayons X comme des émissions synchrotron (produit par des électrons oscillant autour des lignes d'un champ magnétique), des émissions thermiques provenant de gaz fins (appelé rayonnement continu de freinage) qui est au dessus de 107 kelvins, ainsi que des émissions thermiques de gaz épais (appelé rayonnement du corps noir) dont la température est supérieure à 107 kelvins. Puisque les rayons X sont absorbés par l'atmosphère de la terre, toute observation en rayons X doit être effectuée par des ballons de haute altitude, par des fusées, ou par un engin spatial. Parmi les sources de rayons X notable, nous pouvons citer les binaires X, les pulsars, les rémanents de supernovae, les galaxies elliptiques ou actives, et les amas de galaxies.

L'astronomie des rayons gamma concerne les plus petites longueurs d'ondes du spectre électromagnétique. Les rayons gamma peuvent être directement observées par des satellites tels que le Compton Gamma-Ray Observatory.

La majorité des rayons gamma proviennent en réalité des sursauts gamma, des objets qui produisent un rayonnement gamma intense pour une durée variant de quelques millisecondes à quelques milliers de secondes. Seulement 10 % des sources de rayons gamma sont permanentes. Parmi ces émetteurs stables de rayons gamma, on retrouve les pulsars, les étoiles à neutrons, et les trous noirs, au même titre que les galaxies actives.

Les astronomes amateurs observent une variété d'objets célestes, au moyen d'un équipement qu'ils construisent parfois eux-mêmes. Les cibles les plus communes pour un astronome amateur sont la Lune, les planètes, les étoiles, les comètes, les essaims météoritiques, ainsi que les objets du ciel profond que sont les amas stellaires, les galaxies et les nébuleuses. Une branche de l'astronomie amateur est l'astrophotographie, consistant à photographier le ciel nocturne. Une partie des amateurs aiment se spécialiser dans l'observation d'un type d'objet particulier,.

La plupart des amateurs observent le ciel au longueurs d'ondes visibles, mais une minorité travaille avec des rayonnements hors du spectre visible. Cela comprend l'utilisation de filtres infrarouges sur des télescopes conventionnels, ou l'utilisation de radiotélescopes. Le pionnier de la radioastronomie amateur était Karl Jansky qui a commencer à observer le ciel en ondes radio dans les années 1930. Un certain nombre d'amateurs utilisent soit des télescopes fabriqués de leur mains, soit des télescopes qui ont été construits à l'origine pour la recherche astronomique mais qui leur sont maintenant ouverts (par exemple le One-Mile Telescope),.

Une certaine frange de l'astronomie amateur continue de faire progresser l'astronomie. En fait, il s'agit de l'une des seules sciences où les amateurs peuvent contribuer de manière significative. Ceux-ci peuvent effectuer les calculs d'occultation qui servent à préciser les orbites des planètes mineures. Ils peuvent aussi découvrir des comètes, effectuer des observations régulières d'étoiles doubles ou multiples. Les avancées en technologie numérique ont permis aux amateurs de faire des progrès impressionnants dans le domaine de l'astrophotographie,,.

En haut



Astronomie arabe

Muhammad Al-Khwarizmi, père de l’algèbre, composa le Zij al-Sindh, l’une des premières tables astronomiques en langue arabe.

Dans l’histoire de l'astronomie, l’astronomie arabe renvoie aux découvertes astronomiques accomplies par la civilisation islamique, particulièrement au cours de l’Âge d'or de l'Islam (VIIIe siècle-XVIe siècle), et transcrites pour l'essentiel en langue arabe. Ces découvertes ont été effectuées pour l'essentiel dans les sultanats du Moyen-Orient, d’Asie centrale, dans l’Al-Andalus, en Afrique du Nord, puis plus tard en Chine et en Inde. Les débuts de l’astronomie ont procédé d'un cheminement semblables aux autres sciences dans l’Islam, par l’assimilation de connaissances de l’étranger et la composition de ces éléments disparates pour faire naître une tradition originale. Les principaux apports sont indiens, perses et grecs, connus par des traductions puis assimilés. Par la suite, l’astronomie arabe exercera à son tour une influence significative sur les astronomies indienne et européenne et même sur l’astronomie chinoise.

Avec environ 10 000 manuscrits conservés à travers le monde, dont une grande partie n'a toujours pas fait l'objet d'un inventaire bibliographique, le corpus astronomique arabe constitue l'une des composantes les mieux préservées de la littérature scientifique médiévale. Malgré les lacunes bibliographiques, les textes étudiés à ce jour fournissent une image fidèle de l'activité astronomique des peuples de langue arabe.

L’Islam a influencé l'astronomie de manière à la fois directe et indirecte. La discipline religieuse, en posant un certain nombre de problèmes liés au calendrier, a donné un élan décisif à l'épanouissement de l’astronomie mathématique, et notamment à la trigonométrie sphérique.

Au VIIe siècle, Chrétiens et Juifs pratiquaient des cérémonies religieuses dont la date était déterminée par les phases de la Lune, comme Pâques et Pessa'h. Ces deux religions étaient confrontées au fait que le mois lunaire, d’une durée d’environ 29,5 jours, n’est pas une division exacte de l’année tropique de 365 jours. Pour résoudre cette difficulté, Chrétiens et Juifs avaient adopté un calendrier fondé sur une découverte remontant à 430 av. J. Chr. par l’athénien Méton. Dans l'intervalle du cycle métonique, qui dure 19 ans, on dénombre 12 années de 12 mois lunaires et sept années de 13 mois lunaires. Ainsi, par interposition périodique d'un mois intercalaire, le calendrier annuel suivait à peu près le cycle des saisons.

Les astronomes, quant à eux, exploitaient le modèle de Ptolémée pour déterminer les positions de la Lune et des étoiles. La méthode utilisée par Ptolémée pour résoudre les triangles sphériques, imaginée par Ménélaüs d'Alexandrie à la fin du Ier siècle, était encore maladroite : elle procédait par intersection de deux triangles rectangles ; une application du théorème de Ménélaüs permettait ainsi de trouver un arc inconnu pourvu qu'on connaisse les cinq autres éléments du triangle sphérique. Par exemple, pour déterminer l'heure à partir de l’altitude du Soleil, il fallait plusieurs applications successives du théorème de Ménélaüs. Ainsi, pour les astronomes arabes du Moyen-Âge, la recherche d'une méthode trigonométrique plus simple constituait un défi très naturel.

L’Islam encourage les musulmans à rechercher leur chemin grâce aux astres. Le Coran énonce en effet : « C'est lui qui a placé pour vous les étoiles (dans le ciel) afin que vous soyez dirigés dans les ténèbres sur la terre et sur les mers. » Avec une telle incitation, les premiers musulmans ne tardèrent pas à perfectionner les instruments astronomiques et de navigation, d'où vient qu'aujourd'hui encore, la plupart des étoiles naguère utilisées par les marins portent des noms arabes.

Plusieurs règles de l’Islam ont poussé les fidèles à améliorer calculs et observations astronomiques.

Le premier motif est le calendrier musulman. Le Coran édicte en effet que « Le nombre des mois est de douze devant Dieu, tel il est dans le livre de Dieu, depuis le jour où il créa les cieux et la terre. Quatre de ces mois sont sacrés ; c’est la croyance constante,. » Pour cette raison, les Musulmans ne pouvaient se contenter ni du calendrier chrétien ni du calendrier hébreu, et devaient en créer un nouveau.

Le second motif est l'interprétation du mouvement lunaire. Les mois, dans la religion musulmane, ne commencent pas avec la nouvelle Lune astronomique, définie comme l'instant où la Lune a la même longitude écliptique que le Soleil (elle est donc invisible, noyée dans l'albédo solaire) ; les mois commencent lorsque le croissant lunaire commence à apparaître au crépuscule. Le Coran dit précisément : « Ils t’interrogeront sur les nouvelles lunes. Dis-leur : Ce sont les époques fixées pour l’utilité de tous les hommes et pour marquer le pèlerinage de la Mecque, . » Pour déterminer les phases de la Lune, il fallut développer de nouvelles méthodes de calcul et mettre aux points des instruments adaptés à l'observation de la Lune.

Les Musulmans sont également tenus de prier en se prosternant dans la direction de la Kaaba à La Mecque et d’orienter leurs mosquées dans cette direction : il leur faut donc aussi savoir trouver la direction de cet endroit, où qu'ils se trouve sur Terre,. Le dernier problème est la détermination du moment de la Salah. Les Musulmans doivent pouvoir déterminer les heures de prière à cinq moments de la journée (de l’aurore au soir) à partir de la position des astres,.

Le calcul du jour où le croissant lunaire recommence à devenir visible constituait un redoutable défi pour les savants arabes. Bien qu'en effet la théorie de Ptolémée du mouvement composé de la Lune soit assez exacte à l'époque de la nouvelle Lune, elle ne donne la trajectoire de la Lune que par rapport au cercle de l’écliptique. Pour prédire quel jour la Lune commence à redevenir visible, il fallait pouvoir décrire son mouvement par rapport à l’horizon, un problème dont la résolution appartient à une géométrie sphérique assez sophistiquée. Ce sont la détermination de la direction de la Mecque depuis un lieu donné et l'heure des Salah qui ont poussé les Musulmans à élaborer une telle géométrie. La résolution de ces problèmes suppose en effet que l'on sache calculer le côté d'un triangle sphérique de la sphère céleste à partir de ses trois angles et des deux autres côtés ; pour trouver l'heure sidérale, par exemple, il faut savoir construire le triangle dont les sommets sont le zénith, le pôle nord, et la position du Soleil. L’observateur doit connaître l’ascension droite du Soleil et celle du pôle : la première peut être mesurée au sextant, et la seconde n'est autre que la latitude de l’observateur. L'heure est donnée par l’angle entre le méridien (l’arc compris entre le zénith et le pôle) et le cercle horaire du Soleil (c’est-à-dire l’arc compris entre le Soleil et le pôle),.

La connaissance du ciel dans l’Arabie pré-musulmane n’était qu’empirique : elle se limitait au lever et au coucher des astres. On considère généralement que l'essor de l'Islam a provoqué un renouveau de la pensée des Arabes dans ce domaine. Les débuts de l’astronomie ont procédé d'un cheminement semblables aux autres sciences dans l’Islam, par l’assimilation de connaissances de l’étranger et la composition de ces éléments disparates pour faire naître une tradition originale. Les principaux apports sont indiens, perses et grecs, connus par des traductions et commentés.

À ses débuts, la communauté musulmane de Médine observait les dates de la nouvelle Lune pour arrêter la durée des mois lunaires, particulièrement en vue de fixer le Ramadan et les fêtes mobiles.

Vers l'an 638 de notre ère, le calife Omar mit en usage un nouveau calendrier lunaire fondé sur l'enseignement de l’Islam. Ce calendrier comportait douze mois lunaires, dont le premier jour était déterminé par l'observation du croissant lunaire. L'année résultant de ce calendrier, toujours en usage chez les Musulmans,, est plus courte d'environ onze jours que l'année tropique.

Cette période est essentiellement marquée par une assimilation et un syncrétisme des doctrines astronomiques hellénistiques, indiennes et perses antérieures.

Les historiens discernent plusieurs facteurs favorables au développement de l'astronomie arabe. Le premier est la proximité des pays musulmans avec le monde de l'Antiquité classique. Un nombre considérable d'écrits grecs, sanskrits et pehlevis furent traduits en arabe dès le IXe siècle. Ce mouvement était possible grâce au respect envers les savants d'autres cultures.

Une autre impulsion résulte des pratiques religieuses propres à l'Islam, qui recèlent une foule de problèmes d'astronomie mathématique. La résolution de ces problèmes par les savants musulmans est allée bien au delà des méthodes mathématiques des Grecs.

À cette époque, on traduisit pour la première fois un grand nombre d'écrits sanskrits et pehlevis en arabe. La plus célèbre de ces traductions est celle du Surya Siddhanta et des livres de Brahmagupta, parue en 777 sous le titre Zij al-Sindhind, et due à la plume de Muhammad al-Fazari et de Yaqūb ibn Tāriq. Les sources disponibles révèlent que ce texte fut traduit après la visite d'un astronome indien à la cour du Calife Al Mansour en 770. Le plus remarquable livre en pehlevi traduit à cette époque est le Zij al-Shah, un recueil de chroniques astronomiques compilées sur deux siècles dans la Perse des Sassanides.

Des fragments de cette période témoignent de l’adoption par les Arabes des tables de sinus (héritées des mathématiques indiennes) de préférence aux tables des cordes employées par les astronomes grecs. Autre héritage des Indiens, la formule approchée du temps sidéral adoptée par les astronomes arabes.

L’intérêt des Arabes pour l’astronomie a cru parallèlement à celui pour les mathématiques. De ce point de vue, le rôle joué par l’Almageste (composé vers l’an 150 de notre ère) de l’astronome alexandrin Ptolémée (vers 100 - 178) est exemplaire. L’Almageste a effectivement fait date en astronomie, rassemblant, à l’instar des Éléments d’Euclide pour la géométrie, toutes les connaissances contemporaines de leur auteur. Cet ouvrage, dont le titre original est La composition mathématique, acquit au fil des siècles le titre d'usage de Grande Astronomie. Les Arabes l’intitulèrent à leur tour Le Très Grand, ajoutant au superlatif grec megiste (« Très Grand ») l’article défini arabe al- : ainsi l’ouvrage a-t-il été transmis à l’Occident latin sous le titre d’Almageste. Bien que l’essentiel de l’enseignement de l’Almageste, et même de ses hypothèses, devînt de plus en plus anachronique au fil du progrès des observations, il demeura un des piliers de l'enseignement de l’astronomie tant dans le monde musulman qu’en Europe jusqu'à la révolution de Maragha et à la Révolution copernicienne. Ptolémée avait par ailleurs composé d'autres ouvrages, comme une Optique, des Harmoniques, et certains pensent qu’il est aussi l’auteur du Tétrabible, célèbre traité d’astrologie.

L’Almageste constitue véritablement une somme des connaissances des Anciens par les listes exhaustives des phénomènes sidéraux qui y figurent : des tables chronologiques des rois assyriens, perses, grecs, et des empereurs romains, qui permettent de synchroniser les phénomènes astronomiques et les événements historiques. Outre sa pertinence pour dresser des calendriers précis, il rapprochait les connaissances de civilisations très différentes et très éloignées les unes des autres par leur intérêt partagé pour le ciel et l’astrologie. L'ouvrage de Ptolémée devait être recopié et commenté décennie après décennie par les astronomes et les astrologues Arabes, Perses et autres de confession musulmane.

La période qui s'étend du IXe siècle au début du XIe siècle fut marquée par d'intenses recherches, à la suite desquelles on reconnut d'abord la supériorité du système de Ptolémée sur les autres, et où on lui apporta diverses précisions. La recherche astronomique étant vivement encouragée par le calife abbasside al-Ma’mūn, Bagdad et Damas devinrent des centres scientifiques majeurs. Non seulement les califes apportaient à ces travaux un soutien financier, mais ils conférait aux savants un réel prestige.

En astronomie d'observation, le premier ouvrage d’astronomie proprement arabe est le Zij al-Sindh d’Al-Khawarizmi (830). Ce livre, un ensemble de tables donnant les positions successives du Soleil, de la Lune et des cinq planètes connues à l'époque, a joué un rôle essentiel par l’introduction des concepts indiens et grecs dans les sciences arabes. Il marque également un tournant dans l’astronomie arabe : jusque-là, en effet, les astronomes s’étaient bornés à appliquer les connaissances anciennes, à traduire des ouvrages devenus classiques et à s’assimiler les données d'autrui : le livre d’Al-Khwarizmi au contraire innove à la fois au plan de l'approche des faits et du calcul.

En 850, Alfraganus rédigea Kitab fi Jawani (« Abrégé de la science des étoiles »). C’était avant tout un abrégé de la cosmographie de Ptolémée ; toutefois, il corrigeait aussi l'Almageste en s’appuyant sur les observations d’autres astronomes persans. Alfraganus proposa ainsi de nouvelles valeurs pour l’inclinaison de l’écliptique, le mouvement de précession des apogées du Soleil et de la Lune, et la circonférence de la Terre. Ces livres, qui connurent une large diffusion dans le monde musulman, furent même traduits en latin.

Albatenius (853-929) découvrit que la direction de l’excentricité du Soleil était variable, ce qu’en termes modernes on exprime en disant que la Terre décrit une orbite elliptique autour du Soleil. Les périodes de retour de la nouvelle Lune, la durée de l’année tropique et de l’année sidérale, la prédiction des éclipses, et ses travaux sur le phénomène de parallaxe mirent, selon Wickens, les astronomes à portée des concept modernes de relativité et d’Âge de l'univers. » Son contemporain, Yahya Ibn Abi Mansour, procéda à des observations et des mesures systématiques, qu'il exploita dans son Al-Zij al-Mumtahan, où il corrige entièrement les valeurs données dans l’Almageste.

Au Xe siècle, Al-Soufi décrivit grâce à ses observations la position, la magnitude, la luminosité, et la couleur des étoiles, dessinant les constellations une par une dans son Livre des étoiles fixes (964). Il est aussi le premier à avoir décrit et représenté un « petit nuage » qu’on appelle aujourd’hui la Galaxie d'Andromède : il dit qu'elle se trouve devant la bouche de cette constellation que les Arabes appelaient le « Grand Poisson ». Ce nuage était probablement déjà bien connu des astronomes d’Ispahan, c'est-à-dire dès avant 905 de notre ère. La première mention connue du Grand Nuage de Magellan est également due à Abd Al-Rahman al-Soufi,.

Ibn Yunus releva méticuleusement année après année plus de 10 000 positions du Soleil en se servant d'un grand astrolabe (d'un diamètre d'environ 1,40 m). Ses observations des éclipses étaient encore utilisées, des siècles plus tard, par Simon Newcomb dans ses recherches sur le mouvement de la Lune, tandis que ses autres observations inspirèrent à Laplace ses remarques sur l’Obliquité de l’Écliptique et sur les Inégalités de Jupiter et de Saturne.

Al-Khujandi calcula assez précisément l’angle d’inclinaison de l’écliptique qu'il trouva égale à 23°32'19" (soit en degrés décimaux 23,53°). En 1006, l’astronome égyptien Ali ibn Ridwan observa SN 1006, la plus brillante supernova de toute l'histoire, et nous a laissé une description détaillée de cet astre éphémère : il dit que cet astre avait deux à trois fois le diamètre apparent de Vénus, à peu près un quart de la luminosité de la Lune, et qu'elle se trouvait bas sur le quadrant sud de l’horizon. On constata par la suite que les moines de l’abbaye bénédictine de Saint-Gall corroboraient les observations de bin Ridwan sur la magnitude et la position dans le ciel de la supernova.

À la fin du IXe siècle, Albumasar développa un modèle planétaire que certains ont interprété comme un modèle héliocentrique, par le fait que les révolutions orbitales des planètes s’y font autour du Soleil et non autour de la Terre, et que le seul modèle planétaire où cela advient est le modèle héliocentrique. Cette œuvre n'a pas survécu, mais ses tables astronomiques ont été recopiées ensuite par al-Hashimi, Al-Biruni et al-Sijzi.

Ces deux arguments furent adoptés sous une forme ou une autre par des philosophes et des théologiens chrétiens, et le second argument en particulier est devenu célèbre sous la forme que lui a donnée Kant dans sa thèse de la première antinomie concernant le temps.

Au IXe siècle, l’aîné des frères Banū Mūsā, Ja'far Muhammad ibn Mūsā ibn Shākir, apporta des contributions décisives à l’astrophysique et à la mécanique céleste. Il fut le premier à formuler l'hypothèse selon laquelle les sphères célestes sont soumises aux mêmes lois physiques que la Terre, alors que les Anciens pensaient que ces sphères étaient régies par des lois distinctes. Dans son traité Du mouvement astral et de La Force d’Attraction, Muhammad ibn Musa proposa aussi l'existence d'une force d’attraction entre corps célestes, annonçant la loi de la gravitation universelle.

Au Xe siècle, Albatenius (853-929) introduisit l'idée d’éprouver les « observations du passé en en faisant de nouvelles. » Cela incita les astronomes arabes à multiplier les observations empiriques et à développer les techniques expérimentales à partir du XIe siècle.

Alhazen, dans son Kitâb fi'l Manazîr (Traité d'optique, composé entre 1015 et 1021), découvrit le premier que les sphères célestes ne sont pas faites de matière solide, et il établit en outre que les cieux sont moins denses que l’air. Ces idées, reprises par Vitellion, eurent une influence décisive sur les systèmes copernicien et tychonien de l’astronomie.

Toujours au début du XIe siècle, al-Biruni introduisit la méthode expérimentale en astronomie et fut le premier à mener des expériences élaborées à propos des phénomènes astronomiques. Il découvrit que la Voie Lactée est un ensemble d'innombrables étoiles nébuleuses. En Afghanistan, il observa et décrivit en détail l’éclipse solaire du 8 avril 1019, et l’éclipse lunaire du 17 septembre 1019, et produisit les latitudes exactes des étoiles pendant l’éclipse lunaire.

« On sait que tous les astronomes arabes, de Thabit ibn Qurra au IXe siècle à Ibn al-Shatir au XIVe siècle, et tous les philosophes de la nature d’al-Kindi à Averroès et même après, ont accepté ce que Kuhn appelle l’« univers à deux sphères » ...—les Grecs se représentent le monde comme formé de deux sphères dont l'une, la sphère céleste, faite d'un élément particulier appelé « éther », entoure la seconde, où les quatre éléments (terre, eau, air, et feu) sont confinés ».

Certains astronomes musulmans, toutefois, notamment Abū Rayhān al-Bīrūnī et Nasir ad-Din at-Tusi, se demandèrent si la Terre n’était pas elle-même en mouvement et recherchèrent comment rendre cette hypothèse compatible avec les calculs astronomiques et les principes cosmologiques. Plusieurs autres astronomes musulmans, et particulièrement les disciples de l’École de Maragha, mirent au point des modèles planétaires, qui, tout en restant géocentriques, divergeaient de celui de Ptolémée : ils devaient plus tard être adaptés au modèle de Copernic dans le cadre de l’héliocentrisme.

La première distinction sémantique entre astronomie et astrologie est attribuée à l'astronome persan al-Biruni au XIe siècle, bien qu’il ait lui-même réfuté l’astrologie dans un autre de ses livres. D'autres astronomes contemporains, dont al-Farabi, Alhazen, Avicenne et Averroès, critiquaient d'ailleurs cette discipline, pour des motifs tantôt scientifiques (les méthodes des astrologues étant plus conjecturales qu'expérimentales) tantôt religieux (conflits avec les savants musulmans orthodoxes).

Al-Biruni découvrit aussi que la gravité existe aussi pour les corps célestes et les sphères célestes, et il critiqua l’opinion aristotélicienne qui leur refuse toute légèreté ou gravité, et qui font du mouvement circulaire une propriété intrinsèque des corps célestes.

Al-Khazini est ainsi le premier à avoir proposé une théorie du poids des corps qui dépende de leur distance au centre de la Terre. Ce phénomène ne devait pas recevoir de preuve avant celle de Newton pour la loi universelle de la gravitation au XVIIIe siècle.

Alhazen élabora un mécanisme du système de Ptolémée dans son Traité de la figure du monde (Maqâlah fî hay'at al-‛âlam), ouvrage qui occupe une place centrale dans le corpus de la tradition hay’a. Dans son Abrégé d'astronomie, il insiste sur le fait que les astres « sont justiciables des lois physiques. » On peut aussi faire remonter les bases de l’astronomie télescopique à Alhazen, par l’influence de ses études sur l’optique sur le cours ultérieur de l’optique instrumentale.

En 1038, Alhazen décrivit le premier modèle non-Ptolémaïque dans son traité sur Le Modèle des Mouvements. Cette proposition était étrangère aux préoccupations cosmologiques, car il ne s'agissait là que d'une cinématique céleste purement géométrique ; mais elle suscita diverses innovations de géométrie infinitésimale. Ce nouveau modèle était le premier à rejeter équants et cercles déférents, à extraire l’astronomie de la philosophie naturelle, à délivrer la cinématique céleste de la cosmologie, et à abstraire les entités physiques en entités géométriques. Il faisait aussi intervenir une rotation de la Terre autour de l'axe des pôles et les centres des orbites étaient des points géométriques sans signification matérielle particulière, comme le ferait des siècles plus tard Johannes Kepler. Alhazen développe également une version primitive du « rasoir d'Occam », en tâchant de faire le minimum d'hypothèses sur les propriétés caractéristiques des mouvements astraux, dans la mesure où il essaye d’éliminer de son modèle planétaire les hypothèses cosmologiques qu'on ne peut observer de la Terre.

En 1030, al-Biruni commenta les théories indiennes d’Âryabhata, Brahmagupta et Varahamihira dans ses Ta'rikh al-Hind (traduits sous le titre d’Indica). Biruni y rapporte que Brahmagupta et d'autres considèrent que la Terre tourne autour de son axe polaire et il remarque que cela n’entraîne aucun problème au plan mathématique.

En 1031, al-Biruni paracheva son encyclopédie astronomique intitulée Kitab al-Qanun al-Mas'udi (traduite en latin sous le titre de Canon Masudicus), dans laquelle il consigna ses découvertes astronomiques et publia ses tables astronomiques. Il y proposait un modèle géocentrique, avec un tableau des distances de toutes les sphères célestes depuis la Terre, calculées selon les principes de l’Almageste de Ptolémée. Ce livre fournit une technique mathématique de calcul de l’accélération des planètes, et établit pour la première fois que l’apogée solaire et la précession sont distinctes. Al-Biruni découvrit en outre que la distance entre la Terre et le Soleil est plus grande en réalité que l’estimation que donnait Ptolémée, dans la mesure où Ptolémée négligeait les éclipses de Soleil annuelles,.

En 1070, Abu Ubayd al-Juzjani, un disciple d’Avicenne, proposa un modèle non-ptolémaïque dans son traité Tarik al-Aflak. Dans ce livre, il formule le problème dit de l’équant du modèle de Ptolémée, et y propose une solution. Il affirme qu’Avicenne avait lui-même résolu le problème de l’équant.

À la fin du XIe siècle, Arzachel découvrit que les orbites des planètes sont elliptiques et non circulaires, bien qu'il respectât encore le système de Ptolémée.

Par ailleurs, Ibn Bajjah était d’avis que la Voie Lactée est faite d’un grand nombre d’étoiles mais que la réfraction de l’atmosphère terrestre lui donne l’aspect d'un voile continu. Plus tard dans le XIIe siècle, ses successeurs Ibn Tufayl et Alpetragius proposèrent pour la première fois des modèles planétaires dépourvus d’équants, épicycles ou excentriques. Alpetragius découvrit également le premier que les planètes ont leur luminosité propre. Ces systèmes planétaires, cependant, furent rejetés car les prédictions des positions des planètes étaient moins précises qu’avec le modèle de Ptolémée, essentiellement parce qu’ils s’en tenaient au dogme d’Aristote de mouvement circulaire parfait.

L’École de Maragha est à l’origine d’une critique radicale de l’astronomie ptolémaïque. Cette tradition astronomique commence avec l’institution de l'observatoire de Maragha et se poursuit avec l'œuvre des astronomes de Damas et de Samarkande. Comme leurs prédécesseurs d’Andalousie, les astronomes de Maragha s'essayèrent à la résolution du problème de l’équant et proposèrent leurs alternatives au modèle ptolémaïque, et la supplantèrent en ceci qu'ils parvinrent à supprimer les constructions auxiliaires de Ptolémée (équant et excentriques), avec une précision supérieure dans le calcul numérique de la position des planètes, c’est-à-dire avec une meilleure concordance avec les données d’observation. Les astronomes les plus éminents de l’École de Maragha sont Mo'ayyeduddin Urdi († 1266), al-Tūsī (1201-1274), 'Umar al-Katibi al-Qazwini († 1277), Qutb al-Din al-Shirazi (1236-1311), Sadr al-Sharia al-Bukhari (vers 1347), Ibn al-Shatir (1304-1375), Ali Qushji (vers 1474), al-Birjandi († 1525) et Shams al-Din al-Khafri († 1550).

On a pu qualifier leurs réalisations aux XIIIe siècle et XIVe siècle comme la « Révolution Maragha », la « Révolution de l’École de Maragha », ou encore une « Révolution scientifique antérieure à la Renaissance ». Un acquis important de cette révolution est la prise de conscience que l’astronomie ne doit plus se borner à décrire le mouvement des corps physiques en langage mathématique, ou n’être qu’une hypothèse mathématique, ce qui ne ferait que sauver les apparences (pour reprendre l'expression de P. Duhem). Les astronomes de Maragha se convainquirent aussi que le précepte aristotélicien, selon lequel les mouvements dans l'univers ne peuvent être que circulaires ou rectilignes est faux, puisque l’hypocycloïde d'Al-Tusi montre qu’on peut engendrer un mouvement rectiligne uniquement à partir de mouvements circulaires.

À la différence des astronomes grecs qui ne se préoccupaient que de la cohérence entre les axiomes mathématiques et les principes physiques du mouvement des planètes, les astronomes arabes s’efforçaient d'adapter les mathématiques au monde qui les entourait permettant un passage de la Physique d’Aristote à la physique expérimentale et à la physique mathématique à la suite des travaux d’Ibn al-Shatir. La Révolution Maragha est donc caractérisée par une prise de distance avec les bases philosophiques de la cosmologie aristotélicienne et de l’astronomie géocentrique, par un plus grand poids accordé à l’observation et à la mathématisation de l’astronomie et des sciences naturelles en général, comme on le voit dans les œuvres d’Ibn al-Shatir, d’al-Qushji, d’al-Birjandi et d’al-Khafri,,.

Parmi les autres progrès dont on est redevable à l’École de Maragha, citons les premières observations prouvant la rotation de la Terre sur elle-même par al-Tusi et al-Qushji, l'autonomie donnée par Ibn al-Shatir et al-Qushji à l’astronomie par rapport à la philosophie naturelle, la réfutation par Ibn al-Shatir du modèle de Ptolémée sur des raisons expérimentales plutôt que philosophiques, et la conception d'un modèle mathématiquement identique au modèle de Copernic par Ibn al-Shatir.

Mo'ayyeduddin Urdi (d. 1266) fut le premier des astronomes de Maragha à imaginer un modèle planétaire non-ptoléméen, et proposa à cet effet un nouveau théorème, le « lemme Urdi. » Nasir ad-Din at-Tusi (1201-1274), à l'aide de l’hypocycloïde qui porte son nom (et dont le principe est celui de l'engrenage de La Hire) parvint à résoudre une grande partie des difficultés propres au système de Ptolémée en se passant du problématique équant imaginé par l'astronome grec, et construisit un modèle à orbites elliptiques. Un de ses disciples, Qutb al-Din al-Shirazi (1236-1311), dans un traité intitulé Le summum de la connaissance des cieux, examina la possibilité de l’héliocentrisme. 'Umar al-Katibi al-Qazwini (d. 1277), qui était également actif à l'observatoire de Maragha, rapporta dans son Hikmat al-'Ain un argument en faveur du modèle héliocentrique, bien qu'il ait abandonné cette doctrine par la suite.

Ibn al-Shatir (1304–1375) de Damas publia dans son livre Ultime tentative pour corriger la Théorique des planètes le « lemme Urdi », et parvint à supprimer l'équant en introduisant un épicycle supplémentaire (l’hypocycloïde de Tusi), corrigeant le système de Ptolémée d'une façon mathématiquement analogue à celle de Nicolas Copernic au XVIe siècle. À la différence des astronomes qui l'avaient précédé, Ibn al-Shatir ne cherchait pas à préserver les principes théoriques de la philosophie naturelle ou de la cosmologie aristotélicienne, mais plutôt à établir un modèle plus cohérent avec les observations. C’est d'’ailleurs ce souci empirique qui le poussa à éliminer les épicycles du système solaire et tous les excentriques, épicycles et l'équant du système lunaire de Ptolémée. Ainsi, son modèle surpassa en précision tous les autres, et fut le seul à permettre de faire des expériences. Cette démarche, qui marque un tournant dans l'histoire de l'astronomie, a pu être qualifiée de « Révolution Scientifique d’avant la Renaissance. » Avec quelques modifications (inverser la direction du rayon-vecteur Terre-Soleil), Copernic en fit un modèle héliocentrique. Dans la version imprimée de son chef d’œuvre, De revolutionibus orbium coelestium, Copernic cite aussi les théories d’al-Battani, d’Arzachel et d’Averroès parmi ses sources, mais les ouvrages d’Alhazen et d’al-Biruni étaient aussi déjà connus en Europe à cette époque.

Un thème d’intenses débats à l’École de Maragha, et plus tard dans les observatoires de Samarkande et d’Istamboul, était l'éventualité de la rotation de la Terre. Parmi les partisans de cette théorie, on comptait Nasir ad-Din at-Tusi, Nizam al-Din al-Nisaburi (vers 1311), al-Sayyid al-Sharif al-Jurjani (1339-1413), Ali al-Qushji (d. 1474), et Abd al-Ali al-Birjandi (d. 1525). Al-Tusi le premier présenta des preuves fondées sur des observations de la rotation de la Terre, en se servant des positions des comètes par rapport à la Terre, une démonstration qu’al-Qushji renforça avec de nouvelles observations tout en dénonçant la philosophie naturelle d’Aristote. Leur arguments sont identiques à ceux qu'utilisera Nicolas Copernic en 1543 pour expliquer la rotation de la Terre.

On fit venir en Chine sous la Dynastie Yuan des astronomes musulmans pour y perfectionner le calendrier et enrichir l'astronomie. Au cours du règne de Kubilai Khan , des Iraniens vinrent construire un observatoire et un institut d'études astronomiques à Pékin. Un astronome persan, Djamal ad-Din, offrit en 1267 à Kubilai Khan un coffret de sept instruments astronomiques, comprenant un globe et une sphère armillaire. On sait par ailleurs que plusieurs astronomes chinois travaillaient à l’observatoire de Maragha, en Perse.

On considère cette période de plus de quatre siècles comme marquée par une stagnation : la pratique traditionnelle de l’astronomie dans le monde musulman reste soutenue, mais par comparaison aux siècles précédents et surtout le monde extérieur, l’innovation se tarit assez vite. Si pour la plupart des chercheurs il n'y a plus de progrès marquant durant cette période, quelques historiens ont récemment fait valoir que des innovations interviennent encore au XVIe siècle et même plus tard,. Quoiqu’il en soit, après le XVIe siècle, il semble bien que l’intérêt pour l’astronomie théorique soit éteint, tandis qu'au contraire la pratique de l’astronomie d'observation selon la tradition arabe reste soutenue dans les trois empires musulmans de la poudre à canon : l’Empire ottoman, les Séfévides de Perse, et l’Empire moghol en Inde.

L’œuvre d’Ali Qushji (†1474), qui vécut d'abord à Samarkande puis à Istamboul, est considérée comme un exemple de renouveau tardif de l’astronomie arabe et l'on estime qu'il a pu exercer une influence sur Nicolas Copernic du fait de la similitude d’arguments des deux auteurs sur la possibilité de la rotation de la Terre. Avant Ali Qushji, le seul astronome qui avait présenté un argument empirique en faveur de la rotation de la Terre était Nasir ad-Din at-Tusi (†1274) : il s'appuyait sur le phénomène des comètes pour réfuter la thèse de Ptolémée selon laquelle on peut prouver par la seule observation que la Terre est immobile. Al-Tusi, cela dit, convenait que la Terre était immobile en se référant aux arguments de philosophie naturelle du Traité du Ciel d’Aristote. Au XVe siècle, les oppositions religieuses mirent un frein à l’influence de la physique et de la philosophie naturelle. Ainsi Al-Qushji, dans son pamphlet Sur le caractère prétendument subalterne de l’Astronomie par rapport à la Philosophie, dénonçait la physique d’Aristote et dut séparer entièrement la philosophie de l’astronomie, pour permettre à cette dernière de s’épanouir en tant que discipline empirique et mathématique. Il put ainsi examiner les alternatives au dogme aristotélicien de la Terre immobile. Il développa la thèse d’al-Tusi et conclut, se fondant davantage sur l’expérience que sur la philosophie spéculative, que la théorie d'une Terre en mouvement est tout aussi plausible que celle de la Terre immobile, et qu’il est impossible de discriminer empiriquement si l'une de ces deux thèses est vraie,,.

Ali al-Qushji améliora aussi le modèle planétaire d’al-Tusi et proposa une alternative au modèle de l'orbite de Mercure.

Autre astronome musulman fameux du XVIe siècle, l’Ottoman Taqi al-Din fit construire en 1577 l’Observatoire d’Istamboul, où il put observer le ciel jusqu’en 1580. Il dressa des tables Zij (intitulées La perle intacte) et des catalogues astronomiques plus précis que ceux, contemporains, de Tycho Brahe et de Nicolas Copernic. Al-Din est aussi le premier astronome à utiliser la notation à virgule plutôt que les traditionnelles fractions sexagésimales dans les compte-rendus de ses observations. Il inventa aussi entre 1556 et 1580 de nombreux instruments astronomiques, parmi lesquels de très précises horloges astronomiques.

À la destruction de l’observatoire d’Istanbul en 1580, l’activité astronomique stagna dans l’Empire ottoman, jusqu’à l’introduction de la Révolution copernicienne en 1660, avec la traduction par l'érudit ottoman Ibrahim Efendi al-Zigetvari Tezkireci en arabe de la « Nouvelle théorie des planètes » de Noël Duret (publiée en 1635).

Du XVIe au XVIIe siècle, l’Empire moghol vit naître une synthèse entre l’astronomie arabe et l’astronomie indienne, avec l'association des techniques et des instruments d’observation arabe et des techniques de calcul hindoues. S’il semble qu'il n'y ait guère eu d'intérêt pour l’astronomie théorique, astronomes musulmans et hindous en Inde firent encore de nouveaux progrès dans l’astronomie d'observation et publièrent une centaine de traités Zij. Humâyûn se fit construire un observatoire particulier près de Delhi, et Jahângîr et Shâh Jahân l'envisagèrent également, sans toutefois pouvoir y parvenir. Après le déclin de l’Empire moghol, pourtant, c'est un roi hindou, Jai Singh II d’Ambre, qui entreprit de faire renaître la tradition astronomique arabe dans son royaume. Au début du XVIIIe siècle, il fit édifier plusieurs grands observatoires appelés Yantra Mandirs afin de pouvoir rivaliser avec le fameux observatoire de Samarkande, et mettre à jour les tables sultaniennes d’Ulugh Beg par des observations plus précises. Les instruments et les techniques d’observation mis en œuvre à l’observatoire étaient pour la plupart issus de la tradition islamique, et les techniques de calcul, de la tradition hindoue,. En particulier, l’un des plus remarquables instruments astronomiques inventés par les Musulmans dans l’Inde des Moghols est le « globe céleste sans soudure » (cf. infra Globes).

Jai Singh invita par ailleurs à son observatoire des astronomes européens jésuites, qui lui avaient rapporté les tables astronomiques compilées par Philippe de La Hire en 1702. À la lecture du livre de La Hire, Jai Singh conclut que les techniques et les instruments des Européens étaient moins bons que ceux de son pays. On ignore si les astronomes musulmans de l’Inde ont appris la Révolution copernicienne des jésuites, mais il est vrai que dans la mesure où ils ne s'intéressaient plus à l'astronomie théorique, les spéculations venues d’Europe n'étaient plus susceptibles de retenir leur attention.

Au XXe et au XXIe siècles, les astronomes musulmans ont réalisé de nouvelles avancées dans l'observation de la Lune, tandis que des astronautes et fuséologues musulmans ont participé à la recherche en astronautique et aux programmes internationaux de recherche spatiale.

L'Azéri Kerim Kerimov (alors citoyen de l’Union Soviétique) est un personnage-clef des débuts de l’exploration spatiale. Il est l'un des pionniers du Programme spatial soviétique, l'un des architectes à l’œuvre derrière les premiers vols spatiaux habités (Vostok 1). Il a été responsable du lancement des premières stations spatiales (programmes Salyout et Mir) et des programmes antérieurs (Cosmos 186 et Cosmos 188),.

L’Égyptien Farouk El-Baz travaillait, lui, pour le programme concurrent de la NASA et prit part aux premiers alunissages avec le programme Apollo, en tant que secrétaire du Landing Site Selection Committee, Principal Investigator of Visual Observations and Photography, président du Astronaut Training Group, participa à la planification des explorations scientifiques de la Lune, y compris le choix des sites d'alunissage pour les missions Apollo et l'entraînement des astronautes aux observations et à la photographie lunaire.

À la fin du XXe et au début du XXIe siècle, on compte aussi déjà un certain nombre d’astronautes musulmans, dont le premier est le sultan Salman Al-Saud en tant qu’expert étranger, à bord de la Navette spatiale Discovery STS-51-G, suivi de Muhammed Faris à bord de Soyouz TM-2 et Soyouz TM-3 à bord de la station spatiale Mir ; Abdul Ahad Mohmand à bord de Soyouz TM-5 pour Mir ; Talgat Musabayev (l’un des 25 astronautes restés le plus longtemps dans l’espace) en tant qu’ingénieur de vol à bord de Soyouz TM-19 pour Mir, commandant de bord de Soyouz TM-27 pour Mir, et commandant de bord de Soyouz TM-32 et Soyouz TM-31 pour Station spatiale internationale (SSI) ; enfin Anousheh Ansari, la première femme à travailler à la SSI et le quatrième touriste spatiale.

En 2007, le cheikh malais Muszaphar Shukor rejoignit pendant leRamadan la SSI avec son équipage Expédition 16 à bord de Soyouz TMA-11 dans le cadre du programme Angkasawan. Pour l’occasion, le National Fatwa Council édicta des Règles pour l'accomplissement des rites islamiques (Ibadah) dans la Station spatiale internationale, sur des sujets comme la prière en apesanteur, la recherche de la direction de La Mecque depuis l’ISS, la détermination des heures de prière, et la pratique du jeûne. Shukor célébra aussi l’Aïd el-Fitr à bord de l’ISS. Astronaute et orthopédiste, il fut le premier à effectuer des recherches biomédicales dans l'espace, en particulier en ce qui concerne la multiplication des cellules cancéreuses du foie et la leucémie, la cristallisation de diverses protéines et la multiplication des microbes.

Parmi les plus grands chercheurs musulmans qui participent à la recherche et à l'exploration spatiale, on compte Essam Heggy, qui travaille pour la NASA sur le Programme d’Exploration de Mars, au Lunar and Planetary Institute de Houston ; et Ahmed Salem, Alaa Ibrahim, Mohamed Sultan, et Ahmed Noor.

Selon l’Islam, les Musulmans doivent accomplir des rites religieux certains jours fixés par le calendrier musulman. C'est pourquoi l’observation de la Lune joue un si grand rôle. Récemment, avec les moyens fournis par télécommunications et les nouvelles technologies pour déterminer l'heure de la nouvelle Lune, une nouvelle tendance est apparue chez les Musulmans,, et de nouvelles questions religieuses se sont posées.

En 2005, l’ayatollah Ali Khamenei, Faqih et Rahbar d’Iran, a promulgué une fatwa contre le recours aux technologies modernes pour les Salah. L’Islamic Society of North America de Plainfield (Indiana), a intenté un procès l'année suivante. Les Musulmans rivalisent de prouesses technologiques lors du rituel annuel de détection de la Lune,.

L’ayatollah Khamenei a créé un Comité d’Observation de la Lune, composé de clercs qui dépouillent les observations recueillies dans les différents centres d'observation. Les chercheurs notent l’angle de la Lune, sa position, son illumination, et comparent les observations du terrain avec les cartes calculées qui indiquent en quel point la Lune doit se trouver. En Iran, des groupes d’astronomes accompagnés chacun d'un clerc sont dépêchés à travers le pays, certains utilisant des jumelles infrarouges prêtées par l’armée iranienne et des lunettes astronomiques à haute résolution prêtés par les universités. L’Iran missionne également chaque année un avion pour l’observation. Cet avion est équipé d’appareils photographiques et d’instruments de haute précision, ainsi que d’un ordinateur portable. Des cartographes iraniens de la National Geography Organization in Téhéran ont pu dessiner une carte tri-dimensionnelle de la région en positionnant les 70 points d'où l'on peut le mieux voir la nouvelle Lune. Il y a d’autres tentatives similaires dans d'autres pays musulman.

Les astronomes se lancent aussi dans une compétition sur la détection de la nouvelle Lune à l’œil nu. Selon le calendrier islamique en vigueur en Iran, le dernier « World Record for Lunar Crescent Sighting » a été battu le 7 septembre 2002 (le 29 Jamadi-al Thani 1423 de l’Hégire) par Mohsen Ghazi Mirsaeed sur les hauteurs nord-ouest de Zarand (2 110 m) dans le village de Rashk Bala (31° 04' N , 56° 28' E). Le record pour l'âge de la nouvelle Lune à la première perception à l’œil nu est 11 heures 42 minutes.

L’observatoire astronomique moderne en tant qu’institut de recherches (à la différence des postes d’observation privés tels qu’ils existaient dans l’Antiquité) est une conception des astronomes musulmans, qui rédigèrent les traités Zij grâce à ces observatoires. L’observatoire islamique fut la première institution astronomique spécialisée avec un personnel scientifique, un directeur, un programme d’études, et des locaux où s'accomplissaient la recherche astronomique et les observations. Les observatoires islamiques furent également les premiers centres de recherche à avoir recours à de grands instruments pour améliorer la précision des observations.

Les observatoires islamiques médiévaux étaient aussi les premières institutions à promouvoir le travail d’équipe (au contraire de la recherche individuelle) et où « les investigations théoriques marchaient main dans la main avec l’observation. » En ce sens, ils étaient semblables aux modernes instituts de recherche scientifique.

Les sources signalent que les premières observations astronomiques en terre d’Islam ont été accomplies grâce au mécénat d’al-Ma'moun, et les premiers observatoires islamiques furent aussi construits sous son règne dans l’Irak du IXe siècle. Dans plusieurs observatoires privés, de Damas à Bagdad, on mesurait déjà les degrés méridien, on notait les paramètres solaires, et on menait des observations précises du Soleil, de la Lune, et des planètes.

Au Xe siècle, la dynastie des Bouyides encouragea des grands projets, comme la construction d'un instrument de grande taille utilisé en 950 pour l’observation du ciel : cela nous est connu par les tables zij d’astronomes comme Ibn al-Alam. Le célèbre astronome Abd Al-Rahman Al Sufi, un protégé du prince 'Adud al-Dawla, rectifia systématiquement le catalogue d’étoiles de Ptolémée. Abu-Mahmud al-Khujandi, lui aussi, construisit un observatoire à Ray (Teheran) où l'on sait qu'il a fait dresser un monumental sextant mural en 994. Charaf ad-Dawla Chirzil construisit un observatoire semblable à Bagdad. On connaît enfin par Ibn Yunus à Tolède, et Al-Zarqali à Cordoue les instruments perfectionnés qu'on utilisait déjà.

C'est Malik Shah Ier qui institua le premier grand observatoire, sans doute à Ispahan. C'est là qu’Omar Khayyam et ses collaborateurs construisirent leurs tables et promulguèrent le Calendrier solaire persan, également appelé calendrier jalali, à l’époque le plus précis calendrier solaire. Une version moderne de ce calendrier est toujours d'usage officiel dans l’Iran actuel.

Les observatoires les plus réputés, cependant, ne furent établis qu'à partir du début du XIIIe siècle. al-Tusi fit édifier l’observatoire de Maragha grâce aux donations de Houlagou Khan au XIIIe siècle. les bâtiments comportaient une résidence personnelle pour Houlagou Khan, ainsi qu'une bibliothèque et une mosquée. Certains des meilleurs astronomes de l'époque s'y sont rendus, et leur collaboration a débouché pendant 50 ans sur d'importantes modifications successives au modèle de Ptolémée. Les observations d’al-Tusi et de son équipe ont été rassemblées par écrit dans les tables intitulées Zij-i Ilkhani.

En 1420, le prince Ulugh Beg, lui-même astronome et mathématicien, fit construire un grand observatoire à Samarkande, dont les vestiges ont été retrouvés par une équipe russe en 1908. En 1577, Taqi al-Din bin Ma'ruf fit édifier le grand observatoire al-Din d’Istamboul, d'une taille comparable à ceux de Maragha et de Samarkande.

Dans l’Empire Moghol, Humâyûn se fit construire un observatoire particulier près de Delhi, et Jahângîr et Shâh Jahân l'envisagèrent également, sans toutefois pouvoir y parvenir. Après le déclin de l’Empire moghol, pourtant, c'est un roi hindou, Jai Singh II d’Ambre, qui entreprit de faire renaître la tradition astronomique arabe dans son royaume. Au début du XVIIIe siècle, il fit édifier plusieurs grands observatoires appelés Yantra Mandirs afin de pouvoir rivaliser avec le fameux observatoire de Samarkande, et mettre à jour les tables sultaniennes d’Ulugh Beg par des observations plus précises. Les instruments et les techniques d’observation mis en œuvre à l’observatoire étaient pour la plupart issus de la tradition islamique, et les techniques de calcul, de la tradition hindoue,.

Aujourd'hui, on trouve plusieurs observatoires modernes en Jordanie, Palestine, Liban, Émirats Arabes Unis, Tunisie, etc. L’Iran dispose de matériel moderne à l’Université de Shiraz et l’Université de Tabriz. En décembre 2005, Physics Today a révélé les projets iraniens de s'équiper d'un télescope de 2 m d'ouverture.

Nos connaissances sur les instruments utilisés ou fabriqués par les astronomes musulmans du Moyen-Âge nous viennent essentiellement de deux sources : d’une part les instruments conservés dans les collections privées et des musées, d’autre part les copies de traités et les manuscrits du Moyen-Âge parvenus jusqu'à nous.

Les Musulmans tout en perfectionnant les instruments des Anciens (Grecs et Chaldéens) en y adjoignant de nouvelles échelles, inventèrent un arsenal de nouveaux outils d'observation : leur contribution à l’astronomie instrumentale est donc considérable. Beaucoup de ces instruments ont été imaginé ou construits pour les besoins du culte, comme la détermination de la Qibla (direction de La Mecque) ou de l’heure des Salah.

On fabriqua des astrolabes en laiton partout dans le monde musulman, et on les utilisait surtout pout trouver la qibla. Le plus ancien spécimen date de l’an 315 de l’Hégire (le calendrier musulman, soit 927-928 dans le calendrier chrétien). On attribue la fabrication du premier astrolabe du monde musulman à Fazari. Bien que la civilisation hellénistique ait vu naître des astrolabes primitifs qui servaient à cartographier le ciel, al-Fazari l'a considérablement perfectionné. Les Arabes en systématisèrent l'usage et le perfectionnèrent sous pour déterminer la date du Ramadan, les heures des prières (Salah), la direction de La Mecque (Qibla), et mille autres choses.

Au Xe siècle, al-Soufi décrivait 1 000 utilisations possibles de l’astrolabe, dans des champs aussi divers que l’astronomie, l’astrologie, les horoscopes, la navigation maritime, la topographie, la mesure du temps, la Qibla, les Salah, etc.

Ibn Yunus releva soigneusement plus de 10 000 positions du Soleil pendant des années en se servant d’un astrolabe d’un diamètre de près de 1,40 m.

Les premiers astrolabes mécaniques à engrenages sont apparus dans le monde musulman, et ont été perfectionnés par Ibn Samh (vers 1020). Un de ces appareils, comportant huit roues dentées fut aussi fabriqué sur les indications d’Abū Rayhān al-Bīrūnī en 996. Ces instruments peuvent être considérés comme les ancêtres des horloges astronomiques mises au point ultérieurement par les ingénieurs arabes.

Abu Rayhan al-Biruni imagina et composa le plus ancien traité connu sur l’astrolabe orthographique autour de l'an mil.

Les premiers astrolabes étaient utilisés pour déterminer l'heure du lever et du coucher du Soleil et des étoiles fixes. Au XIe siècle, Arzachel d’al-Andalus construisit le premier astrolabe universel : à la différence de ses prédécesseurs, cet appareil ne dépendait plus de la latitude du lieu d’observation : on pouvait l'utiliser n'importe où sur Terre. L’astrolabe universel se répandit en Europe sous le nom grec de « scaphée ». Autre astrolabe, le zouraqi (cf. supra) imaginé par al-Sijzi est le seul conçu pour intégrer un modèle planétaire héliocentrique où c'est la Terre, et non les cieux, qui sont mobiles.

Ibn al-Shatir a inventé cet appareil dans la Syrie du XIVe siècle.

On inventa plusieurs calculateurs analogiques pour calculer la latitude du Soleil, de la Lune et des planètes, l’écliptique du Soleil, la date des conjonctions planétaires et aussi pour effectuer des interpolations linéaires.

L’Équatoire était un calculateur analogique inventé par Arzachel dans l’al-Andalus, probablement vers 1015. Cet appareil mécanique sert à trouver les longitudes et positions de la Lune, du Soleil, et des planètes sans calcul. Il s'appuie sur un modèle géometrique rendant compte de la position et de l’anomalie moyenne des astres.

Au début du XIe siècle, Abū Rayhān al-Bīrūnī composa le premier traité sur le planisphère, la plus ancienne carte du ciel, et sur un calculateur analogique primitif,.

Abū Rayhān al-Bīrūnī inventa aussi le premier calendrier luni-solaire à calculateur mécanique utilisant un train d’engrenages et huit roues dentées. C'est là un exemple primitif de machine de traitement des données à câblage fixe.

Geber (vers 1100-1150) inventa le torquetum, à la fois instrument d’observation and calculateur analogique permettant de convertir les coordonnées équatoriales. Il permettait de relever la position des astres et de les convertir en trois système de coordonnées: horizontales, équatoriales, et écliptiques.

Au XVe siècle, al-Kashi mit au point une Plaque des conjonctions, calculateur permettant de trouver la date des conjonctions planétaires, and et d'effectuer des interpolations linéaires.

Au XVe siècle, ce même al-Kashi proposa un calculateur planétaire mécanique qu’il appela « plaque à orbes », et qui permettait de résoudre graphiquement un certain nombre de problèmes relatifs aux orbites des planètes, dont la prédiction de la longitude vraie du Soleil, de la Lune et des planètes en considérant les orbites comme elliptiques ; les latitudes du Soleil, de la Lune et des planètes ; et l’écliptique du Soleil. Cet instrument comportait aussi une alidade et une règle.

Les Musulmans équipèrent leurs observatoires d’horloges astronomiques de haute précision.

Al-Jazari inventa de monumentales horloges astronomiques à eau qui animaient des effigies du Soleil, de la Lune et des étoiles. La plus grande horloge astronomique représentait le zodiaque et les orbites solaire et lunaire. Innovation supplémentaire, cette horloge comportait dans la partie supérieure d'un panneau une bielle permettant d’ouvrir une trappe toutes les heures.

Taqi al-Din inventa la première horloge astronomique à ressorts, décrite dans un livre intitulé Les plus brillantes étoiles pour la construction d'horloges mécaniques (Al-Kawākib al-durriyya fī wadh' al-bankāmat al-dawriyya, 1556-1559).

Taqi al-Din inventa le premier carillon mécanique à heures fixes, décrite dans l'ouvrage cité précédemment. La sonnerie était déclenchée par une bille sur un cadran à roue.

Les astronomes et ingénieurs musulmans inventèrent d'innombrables types de cadrans pour la mesure du temps, et pour calculer les heures des cinq prières.

Les musulmans apportèrent des contributions significatives à la théorie et la fabrication des cadrans solaires, dont le principe leur venait de leurs prédécesseurs indiens et grecs. Al-Khwarizmi composa des tables qui abrégèrent et facilitèrent considérablement la fabrication de ces instruments. Les cadrans solaires arabes pouvaient être utilisés tels quels n’importe où sur Terre. On en plaçait fréquemment au fronton des mosquées pour vérifier l'heure de la prière. L’un des plus beaux spécimens fut fabriqué au XIVe siècle par le muwaqqit (grand horloger) de la mosquée omeyyade de Damas, Ibn al-Shatir. Les astronomes et ingénieurs musulmans furent les premiers à coucher par écrit des instructions sur la construction de cadrans solaires tant horizontaux que verticaux ou polaires.

Comme les anciens cadrans étaient des écrans à style avec des lignes horaires rectilignes, ils marquaient des heures inégales (appelées d’ailleurs « heures apparentes ») qui variaient avec les saisons, chaque jour étant divisé en douze segments égaux : de la sorte, les heures étaient plus courtes l’hiver et plus longues l’été. L’idée de marquer des heures d’égale durée quelle que soit la période l’année est une innovation due à al-Shatir en 1371, suggérée par les découverte en trigonométrie d’Albategnus. Déjà, Ibn al-Shatir savait que « un gnomon parallèle à l'axe de la Terre fait un cadran solaire dont les divisions horaires marquent des heures de durées égales tout au long de l’année  ». Son cadran solaire est le plus vieux cadran à axe polaire encore intact. Ce concept est connu de l’Occident dès 1446,.

Il s’agit d’un cadran horaire universel inventé au IXe siècle à Bagdad. On l'utilisait pour la mesure exacte du temps avec le Soleil et les étoiles, et il pouvait servir sous n'importe quelle latitude (c’est là son caractère « universel »). L’Europe le reçut à la Renaissance sous le nom de « Navicula de Venetiis », et le considérait comme l'horloge la plus précise.

Au XIIIe siècle, Ibn al-Shatir inventa la boussole à cadran, une horloge combinant un cadran solaire universel et une boussole : il l’utilisait pour trouver l’heure des Salah.

Une sphère armillaire s'utilise de la même façon qu'un globe. Il ne subsiste aucune sphère armillaire provenant des pays arabes, mais plusieurs traités ont été composé sur l’« instrument à bagues ».

Les astrolabes sphériques sont apparus pour la première fois dans le monde arabe. C'était une variante régionale de l’astrolabe et de la sphère armillaire des Grecs, dont seul un spécimen, daté du XIVe siècle, subsiste.

Le premier globe de l’Ancien Monde fut fabriqué dans le monde arabe au cours du Moyen Âge, par des géographes et des astronomes musulmans actifs sous le calife abbasside Al-Mamoun, au IXe siècle.

On utilisa d'abord les globes célestes pour résoudre les problèmes d'astronomie. Aujourd’hui, il subsiste 126 de ces appareils à travers le monde, dont le plus ancien remonte au XIe siècle. À l'aide de cet appareil, on pouvait déterminer la hauteur du Soleil, ou l’ascension droite et la déclinaison des étoiles en marquant la position de l’observateur le long de l'anneau méridien du globe.

Les globes célestes d’une seule pièce fabriqués par des artisans de l’Empire moghol (à Lahore et dans le Cachemire), sont considérés comme l’un des plus hauts faits de métallurgie et d’artisanat de l’époque moderne. Tous les autres globes connus sont fabriqués par soudure de plusieurs éléments, et encore au XXe siècle, les métallurgistes considéraient qu’il était impossible de faire un globe de métal sans aucun pli de soudure. Mais dans les années 1980, l’archéologue Émilie Savage-Smith découvrit à Lahore et dans le Cachemire plusieurs globes de métal sans soudure. Le plus ancien a été construit au Cachemire par l’orfèvre Ali Kashmiri ibn Luqman en l'an 998 de l’Hégire (1589-90 de l'ère chrétienne) sous le règne d’Akbar le Grand ; un autre, coulé en l'an 1070 de l’Hégire (1659-60 de l'ère chrétienne) par Muhammad Salih Tahtawi, porte des inscriptions en arabe et en sanskrit ; un troisième a été coulé à Lahore par l'orfèvre hindou Lala Balhumal Lahuri en 1842 sous le règne de Jagatjit Singh Bahadur. Il existe vingt-et-un autres globes de ce genre. Ces orfèvres du Moghol avaient su développer une technique de coulée à la cire perdue pour atteindre ce résultat,.

Ces globes célestes d’une seule pièce sont sans équivalent : un auteur n’hésite pas à comparer cette prouesse à ce que peut représenter la pyramide de Khéops pour l'architecture.

Les astronomes et ingénieurs musulmans mirent au point toute une variété d’instruments de visée muraux (quadrants et sextants).

Le quadrant à sinus, inventé par Al-Khawarizmi dans le Bagdad du IXe siècle, servait aux calculs astronomiques.

Le premier quadrant horaire qui ne servait que sous certaines latitudes, fut imaginé par Al-Khawarizmi dans la Bagdad du IXe siècle, alors le centre de production de ces instruments. On l'utilisait pour trouver l'heure (surtout les heures des prières) en observant le Soleil et les étoiles.

Le Quadrans Vetus (« vieux quadrant », tel qu'on l’appelait en Europe lorsqu'on le connut, au XIIIe siècle) était un quadrant à temps universel. Cet appareil mathématique ingénieux avait lui aussi été imaginé par Al-Khawarizmi dans le Bagdad du IXe siècle. On pouvait l'utiliser sous n'importe quelle latitude et à n'importe quel moment de l'année pour trouver l'heure à partir de l’altitude du Soleil. C'est, derrière l’astrolabe, le deuxième instrument astronomique le plus répandu au Moyen Âge. Sa principale utilisation dans le monde musulman était le calcul des heures de la Salah.

Ce quadrant–astrolabe, que l’Europe a appelé Quadrans Novus (« quadrant moderne ») est apparu en Égypte au XIe siècle ou au XIIe siècle.

Le premier quadrant à almucantarat est né dans le monde musulman, et se fondait sur les relations de trigonométrie. Le mot « almucantarat » lui-même vient de l'arabe. Le quadrant à almucantarat n'est au départ qu'un astrolabe amélioré.

Le premier sextant, fabriqué à Ray (Teheran), est l’œuvre d’Abu-Mahmud al-Khujandi en 994. Il décrit ce très grand instrument, permettant une très grande précision dans les mesures astronomiques, dans son traité, Sur l’inclinaison de l’écliptique et les latitudes des villes. Au XVe siècle, Ulugh Beg fit construire le « Sextant de Fakhri », d’un rayon d’à peu près 36 m. Il se dressait à Samarkande, en Ouzbékistan, et cet arc édifié avec beaucoup de soin comportait des escaliers de chaque côté pour permettre aux assistants chargés des mesures de se déplacer rapidement.

On trouve la première référence à un « tube d’observation » dans l’œuvre d’Albatenius (853-929), et la première description exacte d’un tel tube est due à al-Biruni (973-1048), dans une partie de son livre « consacrée à la vérification de la présence du croissant nouveau sur l’horizon. » Bien que ces diaphragmes primitifs soient encore dépourvus de lentille optique, ils « permettaient à l'observateur de se concentrer sur une zone du ciel en éliminant les interférences de la lumière. » Ces tubes furent adoptés plus tard dans l’Europe latine, où ils influencèrent le développement de la lunette astronomique.

Le premier travail d’optique décrivant une loupe intégrée à un instrument est le Traité d’Optique (1021) composé par Alhazen. Ses descriptions furent reprises en Europe lors des premières recherches sur la réfraction ; quant à ses autres travaux sur la réfraction, les miroirs paraboliques, et ses autres instruments comme la chambre noire, jouèrent également leur rôle dans la Révolution mécaniste,.

Taqi al-Din imagina un « appareil pour voir à longue distance », comme il l'affirme dans son Livre de la Lumière de la pupille et de la Vérité des images de 1574 ; il a pu s'agir d'une lunette astronomique primitive : il dit que cet instrument fait apparaître les objets éloignés plus près qu'il ne sont, et qu'il permet de voir les détails d'objets éloignés. Taqi al-Din affirme qu'il a écrit un autre traité (perdu aujourd'hui) où il explique la fabrication et l’utilisation de cet instrument. Ce qu'il décrit est cependant confus car il ajoute que son appareil est semblable à celui qu’utilisaient les Grecs au Pharos d’Alexandrie.

Le mot « almanach » est d’étymologie arabe. L’almanach diffère des tables astronomiques antérieures (comme par exemple les tables babyloniennes, ptolémaïques et les tables Zij) en ceci que « les lignes d'un almanach donnent directement les positions des astres et ne demandent aucun calcul supplémentaire », au contraire des « tables auxiliaires » habituelles fondées sur l’Almageste de Ptolémée. Le plus vieil almanach connu (au sens moderne) est l’Almanach d’Azarchel composé en 1087 par Al-Zarqali à Tolède, dans le royaume d’al-Andalus. Ces tables donnaient pour chaque jour les positions vraies du Soleil, de la Lune et des planètes pour les quatre années allant de 1088 à 1092, ainsi que plusieurs autres tables. Une traduction latine de cet ouvrage fut publiée sous le titre de Tables de Tolède au XIIe siècle et les tables alphonsines en sont une adaptation du XIIIe siècle.

Au XIIe siècle, al-Khazini écrivit le Risala fi'l-alat (Traité sur les instruments) en sept parties qui décrit différents instruments scientifiques : le triquetrum, la dioptre, un instrument triangulaire de son invention, le quadrant et le sextant, l’astrolabe, et divers instruments à miroirs originaux.

Dans l’Égypte du XIVe siècle, Najm al-Din al-Misri (vers 1325) composa un traité décrivant plus de 100 types différents d’instruments scientifiques et astronomiques, la plupart de son invention.

En 1416, al-Kashi écrivit le Traité sur les instruments d’observation astronomiques, qui décrit une multitude d’instruments différents, dont le triquetrum et la sphère armillaire, l’armillaire équinoxiale et solstitielle de Mo'ayyeduddin Urdi, l’instrument aux sinus et aux sinus verse d’Urdi, le sextant d’al-Khujandi, le sextant de Fakhri à l’observatoire de Samarkande, un double quadrant Azimuth-altitude, et une petite sphère armillaire munie d'une alidade de son invention.

Bien des noms modernes d'étoiles et de constellations sont d’étymologie arabe. Ainsi par exemple : Acamar (θ Eridani), Aldébaran (α Tauri), Algol (β Persei, Altaïr (α Aquilae), Baham (θ Pegasi), Baten Kaitos (ζ Ceti), Caph (β Cassiopeiae), Dabih (β Capricorni), Edasich (ι Draconis), Furud (ζ Canis Majoris), Gienah (γ Corvi et ε Cygni), Hadar (β Centauri), Izar (ε Bootis), Jabbah (ν Scorpii), Keid (40 Eridani), Lesath (ν Scorpii et υ Scorpii), Mirak (au moins trois étoiles), Phad (α Columbae et γ Ursae Majoris), Rigel (β Orionis), Sadr (γ Cygni), Altarf (β Cancri, et Vega (α Lyrae), parmi bien d'autres (voir Liste de noms traditionnels d'étoiles). Certains de ces noms étaient déjà attribués au temps de l’Arabie Heureuse, mais beaucoup ne furent donnés que par la suite, comme des traductions de descriptions en grec ancien.

En haut



Histoire de l'astronomie

Nébuleuse M17 : photographie prise par le télescope Hubble.

Vieille de plusieurs milliers d'années d'histoire, l’astronomie est probablement une des plus anciennes des sciences naturelles, ses origines remontant au-delà de l'Antiquité, dans les pratiques religieuses préhistoriques.

L'astronomie est la science de l'observation des astres et cherche à expliquer leur origine, leurs éventuelles évolutions et aussi l'influence qu'ils ont sur la vie de tous les jours : marées, crue du Nil, canicule, etc. Cette influence se manifeste par certains phénomènes exceptionnels (les éclipses, les comètes, les étoiles filantes, etc.) qui pour certains étaient des évènements majeurs dans le rythme de vie de la communauté comme les saisons et pour d'autres la possibilité de mieux faire avancer les connaissances au niveau de la compréhension de l'univers céleste. Elle ne doit pas cependant être confondue avec des disciplines très proches telles que l’archéoastronomie, la mécanique céleste qui n'en sont que des domaines particuliers.

L'étymologie du terme astronomie vient du grec αστρονομία (άστρον et νόμος) ce qui signifie loi des astres.

L'astronomie est peut-être la plus ancienne des sciences, comme semblent l'indiquer nombre de découvertes archéologiques datant de l'âge du bronze et du néolithique. Certaines civilisations de ces périodes avaient déjà compris le caractère périodique des équinoxes et sans doute leur relation avec le cycle des saisons, elles savaient également reconnaître quelques dizaines de constellations. L'astronomie moderne doit son développement à celui des mathématiques depuis l'Antiquité grecque et à l'invention d'instruments d'observation à la fin du Moyen Âge. Si l'astronomie s'est pratiquée pendant plusieurs siècles parallèlement à l'astrologie, le siècle des Lumières et la redécouverte de la pensée grecque ont vu naître la distinction entre la raison et la foi, si bien que l'astrologie n'est plus pratiquée par les astronomes de nos jours.

On ne dispose que d'indices isolés concernant les observations du ciel aux temps préhistoriques. Plusieurs objets, en cartographiant les positions des objets célestes, témoignent de l'observation des astres, du Soleil ou de la Lune. L'ornementation spécifique des grottes du sud de la France, lorsque celle-ci correspond par exemple à des solstices, est un autre élément significatif. Certains auteurs considèrent même que les peintures de ces grottes pourraient être des cartographies stellaires comme les signes du zodiaque. La signification profonde de ces cartographies est inconnue, elle pourrait être d'ordre religieux ou calendaire, marquant les grandes périodes de migration, chasse, ...

Parmi les vestiges spécifiques, en France on peut citer les peintures rupestres de la grotte de Lascaux (datées d'il y a 17.000 ans), et sur lesquelles on croit pouvoir reconnaître une représentation des Pléiades et du zodiaque, ainsi qu'un os d’aigle retrouvé dans l’abri Blanchard et portant des indentations, dont le nombre et la position sur l'os peuvent être mis en rapport avec les lunaisons. Quoiqu'il en soit, le manque d'indices archéologiques explicites ne signifie aucunement que l'observation du ciel ne jouait aucun rôle chez les hommes préhistoriques : celle-ci est bien attestée dans les cultures des chasseurs-cueilleurs contemporaines, comme les aborigènes d'Australie.

Au Néolithique, les sources se multiplient. La mise en œuvre de calendriers, qui témoignent de connaissances certaines de l'évolution du ciel, revêtait pour ces civilisations agraires une importance vitale. La possibilité d'anticiper les événements saisonniers ou annuels rendait la planification possible. On attachait ainsi aux phénomènes célestes une interprétation religieuse de leurs causes possibles.

On peut penser que l'émergence des pratiques agraires s'est accompagnée de la pratique de divers cultes ouraniens et, avec cela, de l'astronomie et de l'astrologie (aussi bien d'ailleurs, de l'astrologie chaldéenne que de la chinoise). D'innombrables sépultures de cette époque sont orientées dans une direction du ciel particulière. Parmi les découvertes archéologiques associées à une pratique du calendrier, il y a lieu de citer les cônes d'or rituels mis au jour en France et en Allemagne méridionale, interprétés comme les couvre-chefs de prêtres d'un culte solaire, et le disque de Nebra. Le cercle de Goseck, tracé il y a près de 7 000 ans, est le plus ancien observatoire solaire connu.

Les vestiges qui nous sont parvenus du Néolithique, tels les grands cercles mégalithiques dont les plus connus sont : Nabta Playa vieux de 6 000 à 6 500 ans ou Stonehenge (Wiltshire, Angleterre) mis en place entre 5000 et 3500 avant le présent, peuvent difficilement être qualifiés d'observatoires. En effet leur fonction était avant tout religieuse, et l'observation, si observation il y avait, était limitée au repérage rituel d'alignements solaires, peut-être lunaires, au moment du lever et du coucher de ces astres à certaines époques de l'année. De plus les cultures qui les ont érigés ne répondent pas aux conditions exprimées ci-dessus : elles se caractérisent en particulier par l'absence d'une écriture et de documents qui nous permettraient de déduire avec certitude que la fonction des monuments mégalithiques comportait bien une composante astronomique, ou même que l'astronomie jouait un rôle majeur dans ces civilisations. Camille Flammarion par exemple, et bien d'autres avant et après lui, parlera au sujet des cercles mégalithiques de « monuments à vocation astronomique » et d'« observatoires de pierre ». Mais les études menées ces trente dernières années ont fortement nuancé une telle affirmation. Depuis les années 1970, l’archéoastronomie, qui se consacre à l'étude de ce genre d'édifices et à leur signification astronomique, s’est constituée en une discipline autonome.

À ses débuts, l'astronomie consiste simplement en l'observation et la prédiction du mouvement des objets célestes visibles à l'œil nu : cela constitue l'Astronomie pré-télescopique. Néanmoins nous devons à ces différentes civilisations de nombreux apports et découvertes.

La plus vieille éclipse de Lune dont mention nous soit parvenue est celle du 17 janvier 3380 av. J.-C., qui aurait été décrite par les Mayas en Amérique centrale. Cette reconstitution est cependant contestée, dans la mesure où la théorie communément reçue pose que le peuple maya n'a pu mettre en œuvre son calendrier avant 3373 av. J.-C. au plus tôt. On n'a pas à ce jour trouvé d'indications attestant d'une utilisation antérieure,,. En Chine, la date de la première éclipse de Soleil mentionnée est datée de 2137 av. J.-C.

Les Égyptiens et les Mésopotamiens vénéraient eux aussi des divinités célestes et s'adonnaient à l'observation des cieux. La première observation d'une éclipse solaire en Mésopotamie est attestée du 6 juin 763 av. J.-C.

Pour les civilisations d'Afrique du Nord et du Proche-Orient, l’aspect du ciel a toujours revêtu une signification mythologique et religieuse. Toutefois, les observations astronomiques n'avaient pas une finalité astrologique aussi prononcée dans la civilisation égyptienne qu’en Mésopotamie.

La nuit commençait avec le crépuscule et se terminait avec le lever du Soleil. Suivant la division de l'année égyptienne en 36 décades, les Égyptiens divisent le ciel en 36 décans, de telle sorte que les étoiles à l'intérieur d'un décan se lèvent ou se couchent une heure après celles du décan précédent, heure variable suivant les saisons. Les douze étoiles servant à la division de la nuit en heures (les décans) étaient associées aux « douze gardiens du ciel » censés accompagner les pharaons défunts dans leur voyage nocturne avec Rê, la divinité solaire. Contrairement à leur importance dans les décans du zodiaque, les constellations ne jouent pratiquement aucun rôle ici. La plus ancienne représentation du ciel étoilé figurait sous les voûtes des chambres funéraires des pyramides égyptiennes. mais les premières véritables représentations de constellations remontent à la XIe dynastie égyptienne et figurent sur la planche inférieure d'un cercueil d’Assiout.

Les principes astronomiques sont aussi à l'œuvre dans la disposition des bâtiments sacrés, notamment celle des pyramides. Mais rien ne nous a été transmis des méthodes utilisées, et les avis sont partagés. Dans le calendrier égyptien, Sirius joue un rôle important, son lever héliaque ayant été mis en parallèle avec la crue annuelle du Nil. Comme l'année égyptienne fait 365 jours exactement, la date de la crue du Nil se déplace progressivement dans le calendrier, et le lever héliaque de Sirius ne revient plus qu'une fois tous les 1460 ans à la même date du calendrier égyptien. Mais à l’origine, il semble que Sirius ait présidé à la tenue des festivités de Thèbes. Une réforme de 150 avant notre ère établit un calendrier amélioré, avec une année de 365,25 jours, préservant ainsi la maîtrise des prêtres sur le calendrier.

Les prédictions astrologiques et les signes célestes formaient la préoccupation essentielle de l’astronomie en Mésopotamie. Les Babyloniens et les Assyriens archivaient et conservaient précieusement les comptes rendus de leurs observations astronomiques remontant jusqu’au IIIe millénaire avant J.-C.

Les Sumériens bâtirent leur calendrier sur la structure des constellations. Des milliers de tablettes d’argile rédigées en cunéiforme contiennent des textes astronomiques, que l'on attribue aux bibliothèques d’Uruk et de Ninive. Tôt au cours du IIIe millénaire av. J.-C., on qualifia Vénus d’étoile d’Inanna. D'antiques sceaux cylindriques et des poèmes dédiés à la planète Vénus en tant qu’incarnation d’Inanna témoignent de l'antiquité des connaissances astronomiques de ce peuple : Inanna, c'est en tant que Vénus que les nations étrangères te voient luire. Ô maîtresse des cieux, je voudrais te dédier mon chant.

Forts de leurs copieuses chroniques astronomiques, les astronomes babyloniens formèrent les premières séries mathématiques, qui leur servaient à calculer les positions des astres et, par là-même, à prédire les prochains phénomènes célestes. Dès 1000 av. J.-C., ils étaient en mesure de tirer des complexes chroniques de conjonction astrale les périodes individuelles de certains astres, et donc de prédire les temps de passage.

Nabu-rimanni est le premier astronome chaldéen dont le nom nous soit parvenu. Les connaissances astronomiques des Hébreux leur venaient de l’astronomie babylonienne : aussi retrouve-t-on dans la Bible l’écho d’énoncés chaldéens sur la position de la Terre dans l'Univers, sur la nature des étoiles et des planètes.

Les Babyloniens disposaient déjà de spécimens rudimentaires de sphère armillaire et les Grecs perfectionnent ces instruments. Ils reprennent également à leur compte la division du zodiaque en 360 degrés, qui remonte sans doute aux décans des Égyptiens, ainsi que les observations, les cycles et les descriptions des configurations planétaires des Babyloniens. En revanche, ils ignorent les méthodes mathématiques de leurs devanciers : la voie empruntée par les Grecs sera différente, car pour les philosophes hellènes, le cosmos est essentiellement géométrique, non arithmétique.

Les connaissances actuelles sur les débuts de l'astronomie grecque sont lacunaires et l’appréciation de ce qu'ils doivent aux Babyloniens demeure pour cette raison imprécise. On peut présumer que la destruction des livres profanes aux premiers siècles de la Chrétienté a aussi fait disparaître un grand nombre d'écrits astronomiques.

La principale source sur les premières conceptions grecques des phénomènes célestes nous vient des odes poétiques : Homère comme Hésiode évoquent en effet les conditions astronomiques ; chez Homère, on ne trouve que de rares allusions aux signes du zodiaque. Les deux auteurs ne font guère montre de connaissances poussées ; c'est ainsi qu'ils décrivent la planète Vénus comme deux astres distincts, l’« étoile du matin » (Phosphoros, litt. « qui apporte la lumière ») et l’« étoile du soir » (Hesperos). Du moins cette méprise, grâce aux connaissances des Babyloniens, était-elle corrigée à l'époque de Platon ; par la suite, on attribua à Pythagore l’unification des deux phénomènes.

Jusqu'au Ve siècle av. J.-C., les présocratiques imaginèrent différents modèles astronomiques pour rendre compte des phénomènes célestes. Ils découvrirent entre autres des méthodes de mesure du temps de plus en plus précises, comme les cadrans solaires, dont le principe leur vint certainement des Babyloniens. Anaximandre, contemporain et disciple de Thalès, fit l'hypothèse du géocentrisme : le premier, il donna à l’Univers la forme d'une sphère, dont la Terre occupe le centre. Les civilisations antérieures, elles, ne voyaient le ciel que comme un hémisphère surplombant une Terre plate, renvoyant à des mythes l'explication de la disparition et de l'apparition des astres le soir et le matin. Anaximandre n'alla toutefois pas jusqu'à assigner à la Terre une forme sphérique.

La Grèce classique fut la première civilisation à détacher la pratique de l'astronomie des préoccupations de calendrier, de divination ou de culte religieux, au profit d'une volonté de fournir une explication théorique globale des phénomènes astronomiques. Elle apporte d'importantes contributions, notamment la définition du système de magnitude. La mesure indirecte du diamètre terrestre par Ératosthène, vers 220 av. J.-C., est restée célèbre : la taille de la Terre était calculée en mesurant la longueur de l'ombre portée au même moment par le Soleil à deux endroits différents, Alexandrie et Syène, villes dont on pouvait estimer la distance, en l'interprétant comme une différence de latitude le long d'un méridien de la sphère terrestre. On connaît généralement moins bien la tentative faite par Aristarque de Samos, de rapporter la distance Terre-Soleil à la distance Terre-Lune qui, par suite d'une précision défectueuse dans les mesures d'angle, donne il est vrai une piètre estimation (le rapport est faux d'un facteur 20...), mais qui n'en est pas moins correcte dans son principe.

Hipparque de Nicée et d'autres perfectionnèrent des instruments astronomiques qui demeurèrent en usage jusqu’à l’invention de la lunette astronomique, près de deux mille ans plus tard : à savoir le théodolite, à ses débuts sorte de sphère armillaire sophistiquée, où l'on pouvait lire les coordonnées sur la sphère céleste au moyen de graduation. Ératosthène en vulgarisa l'usage sous le nom d’astrolabe, et Ptolémée donna la description d'une réduction en plan du réseau de parallèles et de méridiens célestes. Un des rares instruments grecs qui nous soit parvenu à peu près intact de l'Antiquité est la machine d'Anticythère, le plus vieil appareil connu comportant des engrenages (daté d'env. 100 av. J.-C.). On interprète aujourd'hui son mécanisme comme un calculateur analogique employé pour déterminer la position des planètes, et on attribue à Poséidonios (135–51 av. J.-C.) la construction de cet appareil.

Autre invention essentielle pour le développement ultérieur de l’astronomie d’observation, Aristote (384–332 av. J.-C.) décrivit le principe de la chambre noire.

Tandis que les instruments d'observation se perfectionnaient, les Grecs de cette époque, comme l'avaient fait leurs prédécesseurs, tentèrent d'élaborer une théorie permettant d'expliquer les mouvements des astres. Ils restaient toutefois généralement attachés à certains présupposés philosophiques (géocentrisme, fixité de la terre, mouvements circulaires et uniformes des astres). Comme les observations ne s'accordaient pas totalement à ces principes, ils durent faire preuve d'ingéniosité pour les concilier avec la théorie, qui se devait de « sauver les apparences » (σώζειν τὰ φαινόμενα). C'est ainsi que naquirent notamment la théorie des sphères homocentriques (Eudoxe de Cnide) et, surtout, la théorie des épicycles, qui est très probablement à attribuer à Hipparque.

L’œuvre de Ptolémée (vers 150 de notre ère) marque l'apogée de l’astronomie antique : sur la base des connaissances et des théories de son époque (les épicycles), ce savant alexandrin élabora le système planétaire qui porte son nom, et qui fut accepté dans les mondes occidentaux et arabes pendant plus de mille trois cents ans. Avec l’Almageste (en grec, Η μεγάλη Σύνταξις, Le grand traité, transmis en arabe classique sous le titre d’Al megistos, superlatif grec signifiant « le très grand »), il offrit à l'astronomie une synthèse cohérente des connaissances, dont un catalogue d’étoiles et une liste de quarante-huit constellations, antérieure au système moderne de constellations bien que ne couvrant pas toute la sphère céleste. Ces catalogues serviront aux savants jusqu’à la Renaissance. Quant aux Romains, s'ils rangeaient l’astronomie au nombre des arts libéraux, ils ne l'enrichirent guère : c'est qu'ils y voyaient surtout un outil de l’astrologie, science divinatoire éminente. Une partie de la littérature spécialisée fut préservée dans l’Empire romain d’Orient, mais les échanges culturels avec les érudits de l'Occident latin se sont taris dès le Haut Moyen Âge.

Il y eut dans l'Antiquité diverses alternatives au géocentrisme. Plusieurs pythagoriciens, notamment, étaient d'avis que le centre de l’Univers est le siège d'un feu central, autour duquel orbitent la Terre, le Soleil et les planètes. Aristarque de Samos, dès le IIIe siècle av. J.-C., propose un système héliocentrique dans lequel le Soleil est fixe au centre du monde. Il suggère en outre (comme l'avait fait Héraclide du Pont au IVe siècle av. J.-C.) que l'axe de la Terre effectue une précession quotidienne par rapport à la sphère des fixes. Pourtant le géocentrisme, avec une Terre immobile autour de laquelle toutes les sphères tournent quotidiennement, demeura la théorie reçue jusqu’à l’adoption de la théorie de Copernic, lequel s’est inspiré des idées d’Aristarque.

Pline l'Ancien, qui composa vers l'an 60 une somme des connaissances scientifiques de son époque, considérait que l’Astronomie était une connaissance du ciel, et reléguait l'astrologie au rang de pratique divinatoire.

Vers le Ier millénaire av. J.-C., la culture de l’Indus donna naissance à une cosmologie élaborée avec une divinisation des puissances célestes : la Terre, le Soleil (vu comme une pierre incandescente), la Lune, le Feu et les huit demi-quadrants du ciel. C'est un « œuf cosmique » (puruska) qui est à l'origine du monde : sa coquille forme la Terre primitive et le ciel étoilé, et l'intérieur est rempli par de l'air.

Comme l’astronomie indienne ne nous a été transmise que sous forme allégorique par les poèmes védiques, il est difficile d'en donner une synthèse ordonnée en peu de mots. D'une manière générale, l’astronomie védique est très proche de l’astronomie babylonienne, ce qui, selon les interprétations et les datations, justifie ou dément la thèse d'un héritage babylonien. Les historiens de l'astronomie continuent d'envisager les deux hypothèses en parallèle, mais le développement autonome de l'astronomie indienne reste plausible, car certains traits communs entre les deux traditions, comme la division du zodiaque en 360 degrés et douze constellations peuvent très bien s'expliquer par l'aspect des phénomènes naturels eux-mêmes. Ainsi l'année est arrondie à 360 jours, avec douze mois comme en Occident. La durée du jour dépend des saisons (« Muhurtas » de 9,6 heures à 14,4 heures), les orbites planétaires s'étalent entre le Soleil et l’étoile polaire. Le Rig-Veda mentionne 27 constellations associées au mouvement du Soleil ainsi que les 13 divisions zodiacales du ciel. Il existe une correspondance remarquable avec la doctrine chrétienne de Teilhard de Chardin : Dieu est un esprit vivant du Monde, son fils contrôle l'expansion de l'Univers.

Vers le VIe siècle, l’astronomie indienne reçut une impulsion nouvelle avec les idées d’Âryabhata, à qui entre autres on attribue l’invention du zéro. Par la suite, le mahârâja Jai Singh II fera édifier cinq observatoires au début du XVIIIe siècle, entre autres à Delhi et Jaipur. Le plus grand d'entre eux, le Jantar Mantar de Jaipur, comporte quatorze tours d'observation pour la mesure précise des positions astrales.

Même si l’on ne sait que peu de choses des considérations astronomiques des civilisations amérindiennes, leurs édifices cultuels et leurs observatoires astronomiques fournissent de précieuses informations. Si la plupart des écrits et des codex aztèques ont été détruits par les conquistadores, on a conservé des traces des calendriers maya et aztèque. Le comput et le calcul des conjonctions planétaires était indubitablement très perfectionné chez certains peuples, notamment les Toltèques, les Zapotèques et les Mayas : ainsi, sans aucun instrument optique, l'astronomie maya avait réussi à décrire avec précision les phases et éclipses de Vénus.

Les temps de révolution des cinq planètes visibles à l'époque n'étaient connus qu'avec une imprécision de plusieurs minutes. La durée du mois coïncide avec les estimations actuelles à 6 décimales près, ce qui ne représente sur un siècle qu'un écart d'une heure.

L'harmonie du ciel, des hommes et de la terre forme une composante essentielle de la philosophie chinoise. Aussi est-ce sous cet angle que l'on envisageait les configurations du ciel. Selon la littérature contemporaine de République populaire de Chine, les Chinois s'efforçaient de prévoir les perturbations possibles de cette harmonie et par là de préserver les croyances des idées étrangères aux influences incalculables. Aussi les astronomes de la Chine impériale n'avaient-ils pas seulement à s'occuper du calendrier, mais étaient également chargés de prévoir les phénomènes célestes inhabituels (par exemple les éclipses de Soleil) et d'effectuer les pronostics astrologiques officiels. Ils connaissaient dès le début du IIe millénaire av. J.-C. le calendrier luni-solaire avec sa période de 19 ans liée aux nœuds lunaires (voir aussi « cycle de saros »).

C’était un service scientifique dont les origines se perdent dans la nuit des temps mais que l'on peut sans problème faire remonter aux siècles précédant l'ère chrétienne. Ce service persista jusqu'en 1911 avec quatre hauts responsables : l'Astronome impérial (Fenxiangshi), responsable du tirage des horoscopes, le premier astrologue (Baozhangshi), à qui incombaient les chroniques astronomiques, le météorologiste en Chef (Shijinshi) chargé des prévisions météorologiques et des éclipses solaires, et le Gardien du Temps (Qiehushi), chargé du comput. Encore aujourd'hui, les chroniques astronomiques de Chine ancienne passent pour fiables et relativement complètes (cela s'expliquant en partie par le fait que les fonctionnaires chargés de ce travail en répondaient sur leur vie. Ainsi on rapporte que l'astronome Hsi-Ho fut décapité pour avoir manqué la prévision de l'éclipse de Soleil du 3 octobre 2137 av. J.-C.,). Au tournant de l'ère chrétienne, on se mit à observer entre autres des taches solaires, ce qui peut être accompli à l'œil nu au lever et au coucher du Soleil ; à noter l'apparition de novae et de supernovae, appelées étoiles invitées ; et dès 613 av. J.-C. à noter les passages de la comète de Halley.

Selon la cosmogonie de la Chine impériale, il y a cinq régions célestes, correspondant aux quatre points cardinaux et au centre de l’Univers, qui est la zone circumpolaire. À chacun de ces cinq points est associé un palais céleste, tel Ziwei pour la zone circumpolaire ou Tianshi dans la constellation occidentale d'Ophiuchus. On utilisait des instruments semblables à la sphère armillaire, sans que l'on sache s'il s'agit d'une technique venue des contacts avec le monde méditerranéen ou islamique, ou d'une découverte originale du peuple chinois. On dispose en outre de vieilles cartes célestes dressées pour la navigation océanique. À partir de 1600, les missionnaires importèrent dans le pays les connaissances astronomiques des Européens. C'est ainsi que les observatoires de la dynastie Qing étaient traditionnellement dirigés par des jésuites comme Ignaz Kögler ou Anton Gogeisl.

Au Moyen Âge, le savoir astronomique de l’Antiquité restait vivace parmi les érudits hellénophones de l’Empire byzantin. Au contraire, jusqu'au XIIe siècle, l'Occident latin n'avait conservé que fort peu de textes scientifiques. S’il est vrai qu'on respectait toujours le canon traditionnel des arts libéraux, où l’astronomie forme une composante à part entière du quadrivium, en pratique les écoles des monastères du Haut Moyen Âge n'enseignaient généralement que le trivium, qui ignore les sciences mathématiques.

Avec les réformes politiques de Charlemagne, l’astronomie retrouva son rang de discipline d'enseignement : l’empereur ordonna à toutes les églises cathédrales de créer des écoles où l’astronomie viendrait s'ajouter aux disciplines traditionnelles (géométrie, arithmétique et musique) pour reformer le quadrivium, avec l'idée également de former les clercs au calcul du comput, traditionnellement abandonné aux rabbins. Saint Bède le Vénérable au VIIIe siècle développa en Occident les arts libéraux (trivium et quadrivium). Il établit les règles du comput pour le calcul des fêtes mobiles, et pour le calcul du temps, qui nécessitaient des éléments d'astronomie. Gerbert d'Aurillac (Sylvestre II) les introduira en Occident avec d’autres éléments (notamment la philosophie d'Aristote), un peu avant l'an mille. Ces réformes n'eurent toutefois pas le succès durable escompté, de sorte que les connaissances astronomiques demeurèrent en pratique rudimentaires.

C’est en tout cas à l'époque carolingienne que reparut une copie des Phænomena, poèmes didactiques d’Aratos de Soles, sous la forme du manuscrit somptueusement enluminé des Aratea de Leyde, vraisemblablement une donation de Louis le Pieux. Ces poèmes ont dû être rapportés de Lotharingie par un certain Astronomus qu'on ne connaît qu'au travers du titre de ses œuvres. Les textes d'astronomie les plus répandus jusqu'à la fin du Moyen Âge sont, outre les Phænomena d’Aratos, les descriptions de constellations d’Hygin dans son Poeticon Astronomicon. Toutes les connaissances de mythologie classique liées aux constellations provenaient essentiellement de ces deux ouvrages. Les enluminures sont d'une grande valeur artistique. En revanche, les positions données aux astres par les enlumineurs n'ont pratiquement rien à voir avec la réalité de la sphère céleste ; elles ont été modifiées pour mieux coïncider avec les représentations allégoriques des constellations.

Les autres traités d'astronomie des auteurs de l'Antiquité ne furent recopiés que par la suite, puis, avec les débuts de la scolastique au XIe siècle, de plus en plus commentés. Quant à les compléter, les rectifier ou éprouver leur contenu par de véritables observations des cieux, cela dépassait la conception que l'homme médiéval se faisait de la Connaissance.

Si au Bas-Empire on continuait d'enseigner l'astronomie, c'est d'une astronomie aux résultats figés qu'il s'agissait.

Dès la fin du Xe siècle, un grand observatoire est construit près de Téhéran par l'astronome Al-Khujandi.

Dépourvus de télescope, les astronomes arabes n'étaient guère en position d'enrichir les connaissances des Anciens de découvertes significatives. Malgré la traduction en arabe de l'Âryabhata, qui présente un système mathématique dans lequel on considère le mouvement des planètes par rapport au Soleil, on ignora généralement le géocentrisme, les discussions, corrections ou améliorations du système de Ptolémée se limitant à des points de détail, comme les épicycles ou les sphères. Par suite du temps considérable qui s'était écoulé depuis la publication de ces théories, auxquelles des erreurs s'étaient accumulées, le divorce entre les modèles cosmiques des Grecs et les observations n'étaient que trop évidentes pour les érudits arabes. Au XVIe siècle, alors que l'Europe voyait éclore la révolution copernicienne, les érudits arabes se détournaient de plus en plus des doctrines de l'Antiquité. On ignore dans quelle mesure ces deux voies étaient indépendantes l'une de l'autre, ou si Copernic est parvenu par des chemins détournés aux mêmes constats que les Arabes.

Plusieurs progrès des astronomes arabes demeurèrent sans lendemain, comme par exemple l’observatoire astronomique de Samarcande construit sur ordre d’Ulugh Beg au début du XVe siècle. Institution la plus moderne de son temps, elle était déjà détruite une génération seulement après le règne d’Ulugh Beg et fut dès lors abandonnée à la ruine. D'autres observatoires connurent un destin analogue ; seul l’observatoire de Maragha édifié en 1264 par Nasir ad-Din at-Tusi survécut près de 14 ans à son fondateur, avant de fermer ses portes entre 1304 et 1316. Bien que les astronomes arabes eussent reconnu les errements des théories de l'Antiquité et cherchassent à les améliorer, leur apport esssentiel consiste, rétrospectivement, dans la conservation, la traduction et parfois la généralisation des connaissances des Anciens, ce que la culture européenne du Haut Moyen Âge n'a pas été capable de faire. Avec la fin de l’Âge d'or de la civilisation arabo-musulmane au XVe siècle l’astronomie arabe n'était plus en mesure de communiquer aucun élan à l'astronomie occidentale. Ses résultats, rendus désuets par la Renaissance européenne, sombrèrent dans l’oubli.

Grâce aux échanges culturels avec le monde musulman, surtout après la création des royaumes latins d’Orient au XIIe siècle et la Reconquista en péninsule Ibérique, les œuvres d’Aristote et de Ptolémée finirent par être connues de l’Occident via leurs traductions arabes. Les différents systèmes du monde, tels qu'on les découvrit alors dans les écrits d’Aristote et de Ptolémée, ou même dans les écrits d’Al-Farghani, firent l’objet d'innombrables gloses et de débats sur le nombre exact de sphères célestes ou sur la rotation relative de la Terre et de la sphère des fixes. La préférence marquée, dès le début du Moyen Âge, pour les spéculations métaphysico-théologiques sur le cosmos ordonné au détriment de l’observation du ciel, incitait naturellement les astronomes d’Europe à suivre d'abord cette direction. On ne remettait cependant toujours pas en cause les principes de cette cosmologie des sphères.

Le regain d'intérêt pour l’astronomie constitue donc un aspect significatif de la Renaissance du XIIe siècle. La naissance des universités : l’université de Bologne (1158), d’Oxford (1167), de Padoue (1222), la Sorbonne (1253), et l’université de Cambridge (1284) remet l'astronomie à l'honneur, particulièrement dans les facultés de médecine (les horoscopes et la théorie des climats reçoivent en effet une certaine autorité en vertu de la théorie des humeurs et des correspondances). Centrés au départ sur un commentaire du « De Cælo » d’Aristote, les cours d'astronomie s’étoffent pour s’ouvrir sur les éléments de géométrie de la sphère, et la théorie des épicycles de Ptolémée. Dans certaines universités, des cours de spécialité viennent en complément du cours d’astronomie du quadrivium : les théoriques, les habitations, les Climats et l’Astrologie. Ces deux derniers étaient essentiellement utiles aux médecins.

Un professeur de la Sorbonne, Sacrobosco, compose avec le « De sphaera mundi » (vers 1230) le traité d'astronomie le plus diffusé du Moyen Âge. Il expose dans d'autres traités les principes de la numération de position arabe et le calcul du comput. La promotion de la numération de position, héritée des commerçants levantins et des savants arabes, facilite l'introduction des tables numériques, particulièrement des tables de trigonométrie.

Le roi Alphonse X de Castille ordonne aux plus grands astronomes de son royaume la construction de nouvelles tables astronomiques à partir du système de Ptolémée (« tables alphonsines ») : ce travail gigantesque sera achevé en 1252. Elles contiennent nombre d'informations sur le mouvement des astres mais sont encore influencées en grande partie par des idées religieuses. Roger Bacon (1214–1292 ou 1294), s'inspirant d'Aristote, construisit les premiers instruments pour observer directement le Soleil dont une chambre noire et donna dès 1267 la description correcte du polissage d'une lentille.

Puis au XVe siècle, le jeune astronome Regiomontanus publie ses propres traités, comme son Calendarium, qui est pour l'époque une espèce de best-seller. En 1471, il fonde l’observatoire de Nuremberg. En 1472, il réalisa la première mesure du diamètre angulaire d'une comète (à peu près au moment où l'on érigeait, dans l'Empire aztèque, le calendrier appelé « Pierre du Soleil » ). Regiomontanus se démarque de la stricte obédience à la tradition des Anciens. Ses propres observations, et leur comparaison avec les données des Anciens doivent, selon lui, régénérer et aider l’astronomie à trouver « la Vérité ». Cette attitude fait de lui, aux côtés de Nicolas de Cues, l'un des pionniers de la représentation copernicienne du monde.

Quelques décennies avant la chute de Constantinople (1453), des érudits byzantins commençaient à émigrer vers Venise et les principautés italiennes, emportant avec eux quantité de manuscrits grecs. Avec les débuts de l'imprimerie, les grandes œuvres astronomiques connurent une diffusion nouvelle. L'approche humaniste des textes de l'Antiquité favorisait une lecture critique et rendait possible l'expression d'idées nouvelles, voire opposées aux doctrines des Anciens. La Renaissance marque l'apogée de l’astronomie classique en tant que système géométrique du monde, doctrine qui toutefois ne s'intéressait qu'aux causes physiques du mouvement des astres. Si, jusqu'au milieu de la Renaissance, astrologie et astronomie ne s'opposaient pas encore, elles ne se confondaient certainement déjà plus : l’astronomie classique ne se consacre qu'aux positions des étoiles et des planètes et à leur calcul, alors que l'astrologie s'intéresse à l'interprétation des positions relatives des astres pour les événements terrestres. En ce sens, les connaissances astronomiques ne constituaient qu'une technique auxiliaire de l'astrologie. Jusqu'au XVIIe siècle, plusieurs astronomes continuaient de tirer des horoscopes pour leurs protecteurs princiers, mais n'y voyaient plus leur activité principale.

De 1519 à 1522, Fernão de Magalhães (Magellan) accomplit le premier voyage autour du monde, découvrant au passage le Détroit de Magellan, les îles Philippines, les Nuages de Magellan dans le ciel austral et la ligne de changement de date.

L’astronomie européenne ne reprend son élan qu'après 1500 avec les travaux de Nicolas Copernic. Ses observations de la Lune se détachant sur le fond du ciel étoilé le font douter du système géocentrique et l’amènent à concevoir un système où le Soleil serait le centre du cosmos : il est mourant lorsqu'en mai 1543 son livre De revolutionibus orbium coelestium paraît à Nuremberg, et dans lequel il démontre mathématiquement qu'outre le mouvement des planètes, les phénomènes célestes sont tous correctement décrits avec un modèle héliocentrique (certains savants grecs de l'Antiquité avaient en effet déjà établi la compatibilité du mouvement des seules planètes avec l'héliocentrisme). Daniele Barbaro améliora en 1568 la chambre noire en la dotant d’une lentille ouvrant ainsi la voie aux générations postérieures d’astronomes.

Dès les années 1570, Tycho Brahe exécuta les premiers tracés des trajectoires des comètes et en déduisit leur distance à la Terre (1577) : par là, les grandes distances caractéristiques de l'astronomie devenaient calculables. Cinq années auparavant, Tycho avait tenté d'estimer la distance de la Supernova 1572 par un calcul de parallaxe, et notait méticuleusement les positions successives de Mars. Ce travail d'observation, effectué par Tycho Brahe à l'aide du quadrant mural qu'il avait fait construire dans son château d’Uraniborg, est une condition essentielle des découvertes ultérieures de son assistant, Johannes Kepler. Ce quadrant faisait de l'antique sphère armillaire un instrument de mesure universel.

Les princes européens favorisaient l’astronomie dont ils faisaient un ornement de leur cour, donnant à la recherche une impulsion autant financière qu'institutionnelle. Les souverains créèrent des observatoires royaux, tels l’Observatoire royal de Greenwich ou l’Observatoire de Paris. Par delà la mission première assignée à ces institutions, à savoir calculer des tables de marine et s'attaquer au problème des longitudes, elles effectuaient de la recherche fondamentale. Là où les recherches des astronomes de cour se bornaient à combler les demandes du prince, ces observatoires royaux surent développer des traditions de recherche nationales, et devaient au début du XIXe siècle tirer la recherche scientifique dans tous les domaines.

Après la publication par Bayer du premier catalogue d'étoiles de l'époque moderne (Uranometria, 1603), Johannes Kepler donna en 1609 dans son livre Astronomia Nova l'énoncé des deux premières lois qui portent son nom, relatives au mouvement des planètes autour du Soleil (ses œuvres antérieures pouvant être considérées comme des travaux préparatoires à l’« Astronomia Nova »). Ces lois fournissaient la première description satisfaisante du mouvement des planètes d'un point de vue héliocentrique.

L’invention de la lunette astronomique au début du XVIIe siècle marque un tournant décisif pour l'astronomie. Au début du XVIIe siècle, il devint possible d’observer le ciel à l’aide de nouveaux instruments d'optique : la première lunette d'approche fonctionnelle venait alors d'être fabriquée par Jacques Metius aux Pays-Bas. Grâce à une lunette d'approche, l’astronome Simon Marius redécouvrit en 1612 la galaxie voisine d’Andromède (elle avait été observée pour la première fois par l'astronome persan Al-Sufi au Xe siècle).

Dès 1610, Galilée décrivit dans son livre « Sidereus Nuncius » la lunette astronomique qu'il avait mise au point : au moyen de cet appareil, Galilée avait découvert les phases de Vénus et les quatre « planètes médicéennes » orbitant autour de Jupiter. Le système de Ptolémée en fut durablement ébranlé et il devenait clair que le système de Copernic, aussi bien que le modèle héliocentrique (concurrent) de Tycho Brahe étaient cohérents avec les observations. Le « Dialogue sur les deux grands systèmes du monde » de Galilée, paru en 1632, dénonçait les erreurs des Anciens (notamment les principes aristotéliciens du mouvement et le géocentrisme de Ptolémée) : attaqué par l’Inquisition, son auteur dut se rétracter et abjurer la doctrine héliocentrique le 22 juin 1633 ; il n'était pas possible à cette époque d'imposer une doctrine uniquement par la théorie ou l'observation. La controverse qui s'ensuivit avec l’Église et qui se conclut par la « victoire juridique » de l’Inquisition sur Galilée est à l'origine des relations problématiques de l’Église avec les Sciences naturelles.

Jean-Baptiste Cysat découvrit en 1619 de nouvelles étoiles binaires orbitant l'une autour de l'autre : cette découverte relança les spéculations sur l'existence d'autres systèmes planétaires que le nôtre, spéculations que Giordano Bruno, cinquante ans plus tôt, n'avaient proposées que sur des bases philosophiques.

Quatre années après la publication par Giovanni Riccioli de la première carte lunaire (1651), Christiaan Huygens et Giovanni Domenico Cassini annoncèrent la découverte des anneaux de Saturne, de la lune Titan et de la nébuleuse d'Orion.

Les contributions d’Isaac Newton à l'astronomie sont considérables : encore jeune géomètre, il imagina de concentrer la lumière avec un miroir parabolique en métal poli au lieu de lentilles de verre : c'était l'acte de naissance du télescope (1668) ; il est également l'un des pionniers de la théorie corpusculaire de la lumière ; dans les années suivantes, il montra par le calcul qu’une certaine forme mathématique d'action à distance (la gravitation) permet de retrouver les trois lois de Kepler et publia l'ensemble de ses résultats dans son chef-d'œuvre, Philosophiae Naturalis Principia Mathematica (1687). Ces travaux amenaient peu à peu la compréhension du cosmos sur un plan nouveau.

Vers ce temps, Giovanni Domenico Cassini découvrit quatre nouveaux satellites de Saturne : Japet (1671), Rhéa (1672), Téthys et Dioné (1684). De 1683 à 1686, il découvrit avec Nicolas Fatio de Duillier la lumière zodiacale, dont il proposa une interprétation.

En reliant la durée d'occultation des satellites de Jupiter par leur planète mère, à leur distance à la Terre, Olaf Römer établit en 1676 que la vitesse de la lumière est finie. Grâce à sa mesure du temps de parcours de la lumière (22 min = 1 320 s) et à la valeur du diamètre de l'orbite terrestre proposée par Cassini (280 millions de km avec les unités modernes), Christiaan Huygens put en 1678 estimer la vitesse à 213 000 km/s (la valeur reçue de nos jours est c = 299 792,45 km/s).

Edmond Halley fut le premier à prédire exactement par le calcul le retour d'une comète en 1705. Il avait pour cela supposé que la comète de 1682 n'était pas différente de celle qu'on avait observée en 1607 et encore auparavant en 1531 : cela l'amena à proposer un nouveau passage en 1758. En 1718, il détecta que les étoiles dites « fixes » sont en réalité animées d'un mouvement propre quasi insensible.

Les découvertes accomplies depuis l'émergence de l'optique instrumentale ont bouleversé la conception du ciel et de l’Univers, ôtant un certain crédit aux théories héritées de l'Antiquité. C'est pourquoi le public cultivé brûle de partager les découvertes les plus récentes, et veut comprendre les hypothèses scientifiques en débat, comme en témoignent, entre autres, certaines pièces de Molière. Fontenelle est l'un des premiers à répondre à cette attente : dans ses « Entretiens sur la pluralité des mondes habités » (1686), l'un des premiers ouvrages de vulgarisation scientifique, il expose le système de Copernic et la cosmologie cartésienne des tourbillons. Huygens reprend à son tour l'idée de Fontenelle de vulgariser l'astronomie lorsqu'il compose son « Cosmotheoros » (1698). Les ouvrages de ce genre se multiplient désormais avec Voltaire et ses « Éléments de la philosophie de Newton » (1738) jusqu'à Euler et ses « Lettres à une princesse d'Allemagne » (écrites en français, de 1761 à 1762) : c'est ainsi qu’aujourd'hui, l'astronomie est l'une des sciences naturelles les plus richement dotées en ouvrage de vulgarisation.

Emmanuel Kant, s'appuyant sur les résultats des Principia de Newton, fut le premier (1755) à tenter d'expliquer la formation du système solaire par des considérations purement mécaniques. Le 3 juin 1769, l'explorateur James Cook, mettant à profit l'observation du transit de Vénus qu'il put effectuer à Tahiti, procéda à la première mesure directe des distances Terre-Vénus-Soleil, devançant l'infortuné astronome français Guillaume Le Gentil.

Bien qu'elle soit encore visible à l’œil nu par temps clair, du fait de sa marche apparente très lente liée à son éloignement, les Anciens ne considéraient pas Uranus comme une planète. John Flamsteed, qui fut le premier à l'observer à la lunette astronomique (23 décembre 1690), la catalogua comme l'étoile 34 Tauri. Le 13 mars 1781, William Herschel, voyant que cet astre était mobile par rapport aux autres étoiles, reclassa 34 Tauri comme une comète. L’idée qu'il existait une septième planète, inconnue des Anciens, revient à Nevil Maskelyne. Pour les astronomes contemporains, cette découverte fut si importante que même des décennies plus tard, l'endroit où l'on avait découvert Uranus pour la première fois restait marqué sur les cartes célestes. Herschel découvrit en 1787 les deux premiers satellites d’Uranus, Titania et Obéron, comme il avait mis en évidence en 1783 le mouvement de translation propre du Soleil vers les constellations d’Hercule et de la Lyre. Ainsi, le Soleil n'était plus qu'une étoile parmi d'autres, en mouvement à l'intérieur de la Voie lactée, perspective qui ouvrait de nouveaux horizons pour la connaissance du ciel.

On découvre que les étoiles sont des objets très lointains : l'étoile la plus proche du système solaire, Proxima du Centaure, est à plus de 4 années-lumière. La spectroscopie astronomique, dès son introduction, démontre qu'elles sont similaires à notre Soleil, mais dans une grande gamme de température, de masse et de taille.

Enhardis par le succès d’Herschel, les astronomes se mirent en chasse de nouvelles planètes : c'est ainsi qu'ils tombèrent sur la ceinture d'astéroïdes orbitant entre Mars et Jupiter. Alors qu'un siècle plus tôt on avait pris Uranus pour une étoile et non une planète, on disposa bientôt de suffisamment de données observationnelles pour reconnaître l'irrégularité du mouvement de cet astre. Les irrégularités furent attribuées à l'attraction d'une planète voisine, encore inconnue, que Johann Gottfried Galle devait finalement découvrir en 1846 et que l'on baptisa Neptune. Galilée l'avait déjà dessinée le 27 décembre 1612, mais n'y voyait qu'une étoile.

À cette époque, les développements scientifiques concernent essentiellement les principes physiques de l'observation des cieux, c'est-à-dire l’optique. William Herschel découvre la lumière infrarouge (1800), William Hyde Wollaston les raies d’absorption dans le spectre de la lumière solaire (1802). Indépendamment de Wollaston, Joseph von Fraunhofer décrit les raies de Fraunhofer (1813) et, un an plus tard, invente le spectroscope. Grâce aux travaux de Kirchhoff et de Bunsen, l'existence de ces raies d'absorption recevront dès 1859 une interprétation physique qui est la base des méthodes de l’astrophysique.

Un pas supplémentaire est accompli par la substitution de la photographie à l’œil en tant qu'instrument d'observation du ciel. La première reproduction par exposition à la lumière a été développée par Joseph Nicéphore Niépce (1826). John William Draper prend la première photographie de la Lune en 1840 au moyen d'un daguerréotype. Désormais, non seulement les observations astronomiques gagnaient en objectivité, mais il devenait possible, par une exposition de plusieurs heures, d'obtenir une luminosité suffisante pour rendre certains détails visibles. L'un des premiers astronomes à en faire usage fut le père jésuite Angelo Secchi, directeur de l’observatoire du Vatican ; il est également reconnu comme l’un des pionniers de l’analyse spectrale.

Reprenant des calculs de 1844, Friedrich Wilhelm Bessel découvrit en 1862 une étoile compagnon de Sirius dans la constellation du Grand Chien (Sirius B), qui s'avéra par la suite être une étoile naine de densité particulièrement élevée. Asaph Hall découvrit en 1877 les deux satellites de Mars et Schiaparelli les soi-disant « canaux martiens » – qui par la suite donnèrent crédit aux spéculations sur l'existence d'un peuple de « Martiens ». Gustav Witt signala en 1898 la découverte de l’astéroïde Éros.

Angelo Secchi poursuivit dans la voie engagée par Kirchhoff en répertoriant les étoiles selon leur spectre lumineux. Il était en effet convaincu que les étoiles se répartissaient selon une gradation logique à grande échelle. À l'aide d'un spectrographe, Secchi classa ainsi les étoiles en quatre catégories : étoiles de type I, II, III et IV (classe spectrale). Cette division spectrale prit une importance accrue lorsque l'on s'aperçut qu'elle correspondait à la température superficielle des astres. Grâce à l’analyse spectrale, Secchi avait compilé le premier catalogue spectral de l’histoire de l’astronomie : sa tentative sera reprise en 1890, par un groupe d’astronomes, parmi lesquels Williamina Fleming, Antonia Maury et Annie Jump Cannon.

William Huggins, après avoir lu le mémoire de Kirchhoff sur l’identification des éléments chimiques d’après leur spectre, décida de se consacrer à ce champ de recherche. Se servant précisément d'un spectrographe, il commença ses recherches sur les autres astres : il isola dans les comètes des indices de présence d’hydrocarbures gazeux, et en 1866 il pointa son instrument sur une nova apparue dans la Couronne boréale, s’apercevant qu'il s’y produisait une gigantesque éruption d’hydrogène et d’autres gaz. Il lança par là l’étude des mécanismes des novæ, dans lesquelles il voyait d'ailleurs la genèse des étoiles, ou des objets en mouvement rapide.

Joseph Lockyer découvrit que le spectre solaire manifestait la présence d'un élément inconnu, qu'il baptisa hélium. Sa découverte s'avéra fondamentale pour l’astronomie, car l'hélium est une substance clef du processus évolutif des étoiles. C'est en 1890, au cours d'un voyage en Grèce, qu’observant l’orientation caractéristique des temples grecs il constata que leur axe était aligné dans la direction du lever et du coucher du Soleil. Il supposa alors que les temples égyptiens pouvaient aussi manifester une orientation caractéristique. Il entreprit ainsi l'étude de quelques monuments, relevant notamment que sept temples égyptiens étaient orientés selon le lever de Sirius. Les découvertes de Lockyer firent rapidement sensation dans le monde savant. Il trouva ensuite l’orientation du temple d’Amon-Rê à Karnak, et fit enfin porter ses recherches sur les alignements de Stonehenge, se risquant ainsi à établir la date de leur érection.

Max Planck publia en 1900 la loi du rayonnement du corps noir, preuve de l'augmentation de l'entropie de l’Univers et premier pas vers la théorie des quanta. L'année suivante, Charles Dillon Perrine décrivit avec George Willis Ritchey un halo de gaz autour de l’étoile Nova Persei 1901 animé d'une vitesse apparente supérieure à celle de la lumière, puis découvrit deux nouveaux satellites naturels de Jupiter. Max Wolf découvrit en 1906 le premier astéroïde troyen (Achille) et à peu près simultanément, Johannes Franz Hartmann donna les premières preuves de l'existence d'un milieu interstellaire.

Albert Einstein avec sa théorie de la relativité restreinte et générale a jeté les bases de plusieurs théories de l’astrophysique moderne. La fusion nucléaire est une conséquence de l’équivalence masse-énergie, certains objets extrêmes comme les étoiles à neutrons et les trous noirs doivent leur existence théorique à la théorie de la relativité ; la cosmologie elle-même repose en grande partie sur cette théorie.

Henry Norris Russell, reprenant les travaux antérieurs d’Ejnar Hertzsprung, imagina en 1913 le diagramme de Hertzsprung-Russell : il s'agit d'une méthode fondée sur l'analyse spectrale du rayonnement d'une étoile pour déterminer son stade d'évolution.

Le 30 juin 1908, se produisit la catastrophe du météorite de la Toungouska (40 km2 dévastés), et on découvrit en 1920 la plus lourde sidérite de tous les temps (dans la Namibie, 60 t, 3 m × 2,8 m × 1,2 m).

La compréhension du monde physique par l'astronomie est redevable à Arthur Eddington de l'hypothèse que la fusion nucléaire, mentionnée plus haut, est la source d’énergie des étoiles (1920) ; à Edwin Hubble, de la reconnaissance que les nébuleuses spirales sont des objets extragalactiques (1923) ainsi que de l'hypothèse de l’expansion de l’Univers (1929), à laquelle il parvint en rapportant l'éloignement des galaxies à leur vitesse d'éloignement. L'hypothèse d'un univers en expansion depuis le Big Bang initial est aujourd'hui généralement admise.

En 1923, Edwin Hubble parvint à établir que la galaxie d'Andromède (M 31) est située largement en dehors de la Voie lactée, et donc qu'il existe d'autres galaxies que la nôtre. Georges Lemaître interpréta en 1927 le décalage vers le rouge des objets célestes lointains, découvert par Milton Humason, comme une expansion généralisée de l’Univers. Puis en 1929, Hubble démontra de façon certaine que le décalage vers le rouge du spectre des galaxies est proportionnel à leur distance. Bien que ses calculs aient dû être corrigés depuis à de multiples reprises, la constante fondamentale de la cosmologie continue de porter son nom (constante de Hubble). La durée qui se déduit par le calcul de la loi de Hubble permet de dater le début de l'expansion de l’Univers (Big Bang). Hubble lui-même était arrivé à 2 milliards d’années ; aujourd'hui, les chercheurs s'accordent sur une valeur de 14 milliards d’années.

C'est en attribuant à une huitième planète les défauts d'ellipticité de la trajectoire d’Uranus qu’en 1846 on avait découvert Neptune. Pourtant après correction, les trajectoires de ces deux planètes présentaient toujours des anomalies sensibles. C'est pour cette raison qu'on se mit en quête d'une neuvième planète, « Transneptune ».

Au cours de ces recherches, Percival Lowell (1855–1916) avait lui-même photographié Pluton à son insu dès 1915, mais il ne l'avait pas identifiée comme une planète. Ce n'est que le 18 février 1930 que Clyde Tombaugh la mit en évidence dans l’observatoire Lowell fondé par P. Lowell en comparant un certain nombre de plaques photographiques à l'aide d'un comparateur à clignotement. Jusqu'à un passé récent, on voyait encore en Pluton la neuvième planète du système solaire.

Dans le cadre de son travail à l'observatoire du pic du Midi de Bigorre, Bernard Lyot découvrit que la surface de la Lune présentait des traces caractéristiques de cendres volcaniques et qu'il se produit des tempêtes de sable sur Mars. En 1931, Karl Jansky localisa la source radio « Sagittarius A ». Puis en 1933, Walter Baade et Fritz Zwicky émettent leur théorie de l'évolution des supernovae en étoiles à neutrons, dont la densité avoisine celle du noyau d'un atome.

L’identification des phénomènes physiques qui précèdent cet effondrement en étoile à neutrons date de 1938, l'année même où Nicholson découvrit les 10e et 11e satellites de Jupiter, Lysithéa et Carmé ; elle est due aux physiciens Hans Bethe et Carl Friedrich von Weizsäcker, qui découvrirent la fusion d’hydrogène en hélium via le cycle C-N (processus de fusion stellaire, dit cycle Bethe-Weizsäcker). On en déduisit que les étoiles naissent et se maintiennent en activité par fusion continue d'hydrogène, jusqu'à ce que leurs réserves d'hydrogène soient épuisées. Il s'ensuit un flash de l'hélium, où les noyaux d'hélium sont convertis par fusion en noyaux d’éléments plus lourds. En 1965, Kippenhahn, Thomas, et Weigert, avec d'autres astronomes et physiciens, mettent en évidence qu'il se produit même des phénomènes de fusion d'hydrogène et d'hélium dans les étoiles géantes (masse d'environ trois fois celle du Soleil). Le stade final de ces processus est la formation d’un trou noir.

Le premier contact radar avec un astre fut établi le 10 janvier 1946 (1er écho radar reçu de la Lune, d'une durée de 2,4 secondes) ; il s'ensuivit la découverte en 1951 d'un rayonnement cosmique de 21 cm de longueur d'onde (émis par l'hydrogène interstellaire), puis d'un rayonnement de 2,6 mm (par le monoxyde de carbone) et même en 1956 la première réception d'un rayonnement cosmique par une décharge électrique dans l'atmosphère de Vénus, jusqu'à la découverte en 1965 du fond diffus cosmologique à 3 °K (un écho du Big Bang) : c'était l'acte de naissance de la radioastronomie.

Le premier radiotélescope allemand a été mis en service le 12 mai 1971 à Effelsberg, dans l’Eifel. Mais la recherche se poursuivait toujours dans le domaine de l'astronomie optique : James Van Allen entreprit en 1973 une inspection systématique du ciel, répertoriant par angle solide d'un degré carré (env. 10 − 4 stéradian) jusqu'à 31 600 étoiles et 500 galaxies de luminosité supérieure à +20m, soit 1,3 milliard d’étoiles et 20 millions de galaxies, comportant chacune environ 200 milliards d’étoiles. Entre-temps, en 1974, Stephen Hawking proposait sa théorie du rayonnement des trous noirs. Le 29 mars de la même année, exploitant l'effet de fronde gravitationnelle, la sonde Mariner 10 atteignit pour la première fois la planète Mercure (passages ultérieurs : 21 septembre 1974, 16 mars 1975, etc. – tous en 176 jours), la plus proche du Soleil (avec un passage au droit de Vénus le 5 février 1974). La première description des anneaux d’Uranus date du 10 mars 1977.

Le 3 mars 1972, la NASA lança la sonde spatiale Pioneer 10 qui, le 3 décembre 1973, était la première sonde à croiser au large de Jupiter. Sa sœur jumelle Pioneer 11 décolla le 6 avril 1973, passa au large de Jupiter le 3 décembre 1974 et le 1er septembre 1979 était la première sonde à croiser au large de Saturne.

Le 5 septembre 1977, la NASA lança la sonde spatiale Voyager 1, qui doubla Jupiter à une distance de 675 millions de km le 5 mars 1979, puis dépassa Saturne en novembre 1980. Le 20 août 1978, la Voyager 2 prit son envol : exploitant au mieux l'effet de fronde gravitationnelle, cette sonde fut la première à quitter le système solaire (passage au large de Jupiter le 9 juillet 1979, au large d’Uranus en janvier 1986, de Neptune en 1989), et lors même que ce vol était en cours, l'astronome américain James W. Christy annonça la découverte d’un satellite de Pluton, Charon. On découvrit les premières molécules organiques du cosmos éloigné en 1977-78 dans les nuages interstellaires : notamment de l’acide acétique, de l’acétonitrile, de l’aminométhane, de la vapeur d'eau, de l’éthanol, etc., qui constituent autant d'indications radioastronomiques sur les origines de la vie, et les voyages inhabités atteignirent les limites de notre système solaire (en 1979-1980 avec les sondes Pioneer 11, Voyager 2 : découvertes de nombreux satellites de Jupiter et de Saturne, premières photographies et explorations des anneaux de Saturne en 1984 ; avec Pioneer 10 : premier croisement de l'orbite de Pluton – onze ans après son envol).

La sonde ISEE-3 fut la première à traverser la queue d'une comète : le 11 septembre 1985, elle put prélever et analyser chimiquement le sillage de la comète Giacobini-Zinner. Mais la sensation des années 1980, pour le domaine de l'analyse stellaire, fut l'apparition de la supernova de 1987 dans le Grand Nuage de Magellan (LMC) le 24 février : pour la première fois, on enregistrait et photographiait dès le début l'explosion d'une supernova, les neutrinos émis ayant atteint la Terre avant que les premiers signaux optiques puissent être détectés. Si les instruments d'observation se sont sans cesse perfectionnés, ce n'est qu'au début des années 1990 qu'il devint possible d'effectuer des observations hors de l'atmosphère terrestre, en s'affranchissant des aberrations liées à la turbulence de l'air : le 24 avril 1990, la NASA annonça la mise sur orbite du télescope spatial Hubble par la navette spatiale Discovery. Ce nouvel instrument a permis de prendre des clichés d'un point de vue différent, mais également de disposer d'une résolution inédite. Le 6 août 1993, on découvrit que Pluton était recouvert d'une calotte d'azote solide (et non de méthane, comme on l'avait supposé). Le 27 décembre 1999, on effectua la première réparation de Hubble, ce qui participa (entre autres) à la découverte et à la photographie de la première naine brune connue et de planètes « supergéantes » situées en dehors de notre système solaire.

Les sondes servirent aussi à explorer le système solaire : Galileo rejoignit le planétoïde Ida le 28 août 1991 et le 29 octobre 1991 passait à proximité de Gaspra ; la sonde Ulysses survolait le pôle sud du Soleil le 13 septembre 1994 et la capsule de Galileo traversait même le 7 décembre 1995 l’atmosphère de Jupiter : pour la première fois, l'enveloppe d'une planète gazeuse pouvait être étudiée par spectroscopie. Alan Hale et Thomas Bopp publièrent la découverte, au voisinage de la trajectoire de Jupiter, de la comète qui porte leur nom, le 22 juillet 1995. En mars 1997, cette comète s'illumina d'un éclat de −1m (soit 130 fois l'éclat de la comète de Halley). Des indices (contestés) de vie extraterrestre auraient été décelés en 1996 dans l’Antarctique sur la météorite ALH 84001 (âge estimé à 3,6 milliards d’années) qui proviendrait de la planète Mars.

Avec les débuts de l’exploration spatiale dans la seconde moitié du XXe siècle, l'astronomie a donc pu approcher certains de ses objets d’étude par investigation directe dans notre système solaire. Non moins important aura été l'affranchissement des limitations liées à l'atmosphère terrestre : grâce aux observatoires satellisés, l’astronomie ultraviolette, l’astronomie des rayons X et l’astronomie de l'infrarouge ont permis d’explorer de nouvelles bandes spectrales et ont par là ouvert de nouvelles fenêtres sur l’Univers. Avec l'étude des neutrinos du Soleil et de la supernova 1987A, avec l’observation de particules grâce au rayonnement cosmique et l'élaboration de détecteurs d’ondes gravitationnelles, l’astronomie a pu étendre son champ d'investigation au-delà du rayonnement électromagnétique traditionnel. Simultanément, de nouvelles possibilités d'observation se sont présentées pour l'astronomie optique avec des instruments comme le télescope spatial Hubble ou le « Very Large Telescope ».

Avec la découverte d'astres qui ne sont pas des étoiles en dehors de notre système solaire, l’astronomie accomplit un grand pas dans la connaissance des exoplanètes : le 12 décembre 1984, Mc Carthy fut le premier à annoncer la découverte d'un tel astre par infrarouges : il l'identifia comme une « naine brune » proche de l’étoile Van Briesbroeck 8 (éloignement de 21 années-lumière, ca. 30–80 fois la masse de Jupiter). Au milieu des années 1990, on découvrit pour la première fois des exoplanètes, c’est-à-dire des planètes situées en dehors du système solaire, d'abord orbitant autour d'un pulsar, puis en 1995 autour d'une étoile de la séquence principale. Depuis, le nombre d'exoplanètes croît régulièrement.

La recherche actuelle poursuit les investigations sur les constituants de la matière cosmique et les objets éloignés : ainsi, on a découvert plusieurs planètes extrasolaires (exoplanètes, planemos), si bien qu'en mai 2006 on dénombrait déjà plus de 130 systèmes planétaires. Il est exclu qu'une quelconque forme de vie analogue à celle de notre planète, c'est-à-dire fondée sur la biochimie de l'eau, puisse se développer sur l'une des planètes déjà inventoriées ; mais il faut bien dire que la découverte de planètes de type terrestre est encore hors de portée de notre technologie. Cela dit, les astronomes ne désespèrent pas de pouvoir, grâce à des méthodes comme l’interférométrie, trouver des planètes de la taille de la Terre en orbite autour des étoiles et, d'ici au plus tard une génération, de pouvoir prospecter leur atmosphère par spectroscopie.

Le 11 juin 2007, la NASA annonçait un nouveau record : des chercheurs venaient de découvrir cinq planètes en orbite autour de l'étoile 55 Cancri (une étoile de la galaxie du Cancer, distante d'environ 41 années-lumière). L'une de ces nouvelles planètes, d’une masse de 45 fois celle de la Terre, orbite autour de 55 Cancri dans la « zone habitable », c'est-à-dire à une distance où l'eau peut être liquide.

Pioneer 10, la sonde spatiale qui a décollé en 1972, est l'artéfact humain le plus éloigné de la Terre : sa distance est estimée à 12 heures-lumière, aux frontières présumées de l’héliosphère. Le dernier contact a pu être établi le 22 janvier 2003. La liste des objets transneptuniens de la région extérieure (« ceinture de Kuiper ») de notre système solaire, dont la recherche a commencé il y a plus d'un siècle, s’est entre-temps considérablement allongée.

À son début, durant l'Antiquité, l'astronomie consiste principalement en l'astrométrie, c'est-à-dire la mesure de la position dans le ciel des étoiles et des planètes.

Plus tard, des travaux de Kepler et de Newton naît la mécanique céleste qui permet la prévision mathématique des mouvements des corps célestes sous l'action de la gravitation, en particulier les objets du système solaire.

De nos jours, la plus grande partie du travail dans ces deux disciplines (l'astrométrie et la mécanique céleste), auparavant effectuée à la main, est fortement automatisée grâce aux ordinateurs et aux capteurs CCD, au point que maintenant elles sont rarement considérées comme des disciplines distinctes.

Dorénavant, le mouvement et la position des objets peuvent être rapidement connus, si bien que l'astronomie moderne est beaucoup plus concernée par l'observation et la compréhension de la nature physique des objets célestes.

Depuis le XXe siècle, l'astronomie professionnelle a tendance à se séparer en deux disciplines : astronomie d'observation et astrophysique théorique.

On désigne en fait improprement sous ce titre l'observation des astres à l'aide d'instruments optiques, qu'il s'agisse de lunettes ou de télescopes.

La configuration télescope prend définitivement le pas sur la lunette astronomique, dans le domaine des grands instruments, à cause des problèmes de flexion qui font apparaître trop d'aberrations optiques.

Des avancées majeures de l'astrophysique sont accomplies grâce à ces télescopes : la découverte du fond diffus cosmologique, des pulsars et des quasars.

En haut



Source : Wikipedia